Send to:

Choose Destination
See comment in PubMed Commons below
Neuroscience. 1999 Mar;90(3):729-36.

Acute application of the tricyclic antidepressant desipramine presynaptically stimulates the exocytosis of glutamate in the hippocampus.

Author information

  • 1Department of Pharmacology, University of Bern, Switzerland.


Tricyclic antidepressants (e.g., imipramine, desipramine) are currently used in the treatment of mood disorders such as depression. At the cellular level they inhibit the re-uptake of the exocytosed monoamines serotonin and noradrenaline. However, they also stimulate phospholipase C activity and the production of the second messenger inositol 1,4,5-trisphosphate. Since phospholipase C activation can also lead to the production of the protein kinase C activator diacylglycerol, we have undertaken experiments to see whether acutely applied desipramine could change the synaptic strength of neurons in a protein kinase C-dependent manner. Experiments performed with cultured hippocampal neurons dissociated from neonatal rats revealed that desipramine rapidly enhanced the spontaneous vesicular release of glutamate. This was observed by measuring the frequency of tetrodotoxin-resistant spontaneous excitatory postsynaptic currents. Analysis of amplitude distribution histograms indicated a presynaptic site of action. The protein kinase inhibitor staurosporine and down-regulation of protein kinase C activity greatly reduced the desipramine-dependent enhancement of the frequency of tetrodotoxin-resistant spontaneous excitatory postsynaptic currents. This presynaptic modulation requires SNARE proteins because cleavage of SNAP-25 with the botulinum neurotoxin A strongly reduced the desipramine-induced glutamate release. Thus, acute applications of desipramine stimulated the ongoing neurotransmitter release pathway, probably by activating protein kinase C. Our data indicate that tricyclic antidepressant drugs not only act on serotoninergic and/or noradrenergic cells but can also modify the activity of glutamatergic neurons.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk