Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Dev Biol. 1999 May 1;209(1):60-71.

Defects in tracheoesophageal and lung morphogenesis in Nkx2.1(-/-) mouse embryos.

Author information

  • 1Department of Pediatrics, Women's and Children's Hospital, Los Angeles, California 90033, USA.

Abstract

NKX2.1 is a homeodomain transcriptional factor expressed in thyroid, lung, and parts of the brain. We demonstrate that septation of the anterior foregut along the dorsoventral axis, into distinct tracheal and esophageal structures, is blocked in mouse embryos carrying a homozygous targeted disruption of the Nkx2.1 locus. This is consistent with the loss of Nkx2.1 expression, which defines the dorsoventral boundary within the anterior foregut in wild-type E9 embryos. Failure in septation between the trachea and the esophagus in Nkx2.1(-/-) mice leads to the formation of a common lumen that connects the pharynx to the stomach, serving both as trachea and as esophagus, similar in phenotype to a human pathologic condition termed tracheoesophageal fistula. The main-stem bronchi bifurcate from this common structure and connect to profoundly hypoplastic lungs. The mutant lungs fail to undergo normal branching embryogenesis, consist of highly dilated sacs that are not capable of sustaining normal gas exchange functions, and lead to immediate postnatal death. In situ hybridization suggests reduced Bmp-4 expression in the mutant lung epithelium, providing a possible mechanistic clue for impaired branching. Functional deletion of Nkx2. 1 blocks pulmonary-specific epithelial cell differentiation marked by the absence of pulmonary surfactant protein gene expression. Altered expression of temporally regulated genes such as Vegf demonstrates that the lung in Nkx2.1(-/-) mutant embryos is arrested at early pseudoglandular (E11-E15) stage. These results demonstrate a critical role for Nkx2.1 in morphogenesis of the anterior foregut and the lung as well as in differentiation of pulmonary epithelial cells.

Copyright 1999 Academic Press.

PMID:
10208743
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk