Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1999 Apr 16;274(16):11110-4.

Mechanism of triclosan inhibition of bacterial fatty acid synthesis.

Author information

  • 1Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.

Abstract

Triclosan is a broad-spectrum antibacterial agent that inhibits bacterial fatty acid synthesis at the enoyl-acyl carrier protein reductase (FabI) step. Resistance to triclosan in Escherichia coli is acquired through a missense mutation in the fabI gene that leads to the expression of FabI[G93V]. The specific activity and substrate affinities of FabI[G93V] are similar to FabI. Two different binding assays establish that triclosan dramatically increases the affinity of FabI for NAD+. In contrast, triclosan does not increase the binding of NAD+ to FabI[G93V]. The x-ray crystal structure of the FabI-NAD+-triclosan complex confirms that hydrogen bonds and hydrophobic interactions between triclosan and both the protein and the NAD+ cofactor contribute to the formation of a stable ternary complex, with the drug binding at the enoyl substrate site. These data show that the formation of a noncovalent "bi-substrate" complex accounts for the effectiveness of triclosan as a FabI inhibitor and illustrates that mutations in the FabI active site that interfere with the formation of a stable FabI-NAD+-triclosan ternary complex acquire resistance to the drug.

PMID:
10196195
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk