Format

Send to:

Choose Destination
See comment in PubMed Commons below
Science. 1999 Apr 9;284(5412):305-8.

Solar cycle variability, ozone, and climate

Author information

  • 1NASA Goddard Institute for Space Studies (GISS) and Center for Climate Systems Research, Columbia University, 2880 Broadway, New York, NY 10025, USA. E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, DC 20375, USA.

Abstract

Results from a global climate model including an interactive parameterization of stratospheric chemistry show how upper stratospheric ozone changes may amplify observed, 11-year solar cycle irradiance changes to affect climate. In the model, circulation changes initially induced in the stratosphere subsequently penetrate into the troposphere, demonstrating the importance of the dynamical coupling between the stratosphere and troposphere. The model reproduces many observed 11-year oscillations, including the relatively long record of geopotential height variations; hence, it implies that these oscillations are likely driven, at least in part, by solar variability.

PMID:
10195893
[PubMed - as supplied by publisher]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk