Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Protein Eng. 1999 Feb;12(2):107-18.

Protein subcellular location prediction.

Author information

  • 1Computer-Aided Drug Discovery, Pharmacia & Upjohn, Kalamazoo, MI 49007-4940, USA. kuo-chen.chou@am.pnu.com

Abstract

The function of a protein is closely correlated with its subcellular location. With the rapid increase in new protein sequences entering into data banks, we are confronted with a challenge: is it possible to utilize a bioinformatic approach to help expedite the determination of protein subcellular locations? To explore this problem, proteins were classified, according to their subcellular locations, into the following 12 groups: (1) chloroplast, (2) cytoplasm, (3) cytoskeleton, (4) endoplasmic reticulum, (5) extracell, (6) Golgi apparatus, (7) lysosome, (8) mitochondria, (9) nucleus, (10) peroxisome, (11) plasma membrane and (12) vacuole. Based on the classification scheme that has covered almost all the organelles and subcellular compartments in an animal or plant cell, a covariant discriminant algorithm was proposed to predict the subcellular location of a query protein according to its amino acid composition. Results obtained through self-consistency, jackknife and independent dataset tests indicated that the rates of correct prediction by the current algorithm are significantly higher than those by the existing methods. It is anticipated that the classification scheme and concept and also the prediction algorithm can expedite the functionality determination of new proteins, which can also be of use in the prioritization of genes and proteins identified by genomic efforts as potential molecular targets for drug design.

PMID:
10195282
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk