Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Respir Crit Care Med. 1999 Apr;159(4 Pt 1):1138-46.

Human neutrophil elastase augments fibroblast-mediated contraction of released collagen gels.

Author information

  • 1Pulmonary and Critical Care Medicine Section, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA.

Abstract

In the present study, we tested the hypothesis that neutrophil elastase (NE) might mediate remodeling of extracellular matrix by affecting fibroblast-mediated contraction of three-dimensional collagen gels. Human lung fibroblasts were cast into type I collagen gels containing NE. After gelation, the gels were released into medium and the area was measured by image analyzer. NE augmented gel contraction (p < 0.001). This was not due to cell proliferation or to degradation to soluble collagen fragments because the amounts of DNA and hydroxyproline were not altered. alpha1-Protease inhibitor and the synthetic inhibitor of NE, L-680,833, when added in sufficient amount to inhibit free elastase activity, blocked the contraction induced by NE. Furthermore, neutrophil granulocytes (PMN) in coculture, as well as conditioned media from PMN, resulted in an increased contractility (p < 0.001 for both). Bronchoalveolar lavage fluid (BALF) from patients with increased PMN in their lower respiratory tract and free elastase activity had augmentive activity for gel contraction which could be partially blocked by the inhibitors. We conclude that NE augments fibroblast-mediated contraction of collagen gels. The findings support the notion that products secreted by PMN in inflammatory disorders may lead to rearrangement of extracellular matrix and could subsequently lead to tissue dysfunction.

PMID:
10194158
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk