Chronic hypertension in ANP knockout mice: contribution of peripheral resistance

Regul Pept. 1999 Feb 5;79(2-3):109-15. doi: 10.1016/s0167-0115(98)00149-9.

Abstract

Atrial Natriuretic Peptide (ANP) exerts a chronic hypotensive effect which is mediated by a reduction in total peripheral resistance (TPR). Mice with a homozygous disruption of the pro-ANP gene (-/-) fail to synthesize ANP and develop chronic hypertension in comparison to their normotensive wild-type (+/+) siblings. In order to determine whether alterations in basal hemodynamics underlie the hypertension associated with lack of endogenous ANP activity, we used anesthetized mice to measure arterial blood pressure (ABP) and heart rate (HR), as well as cardiac output (CO) by thermodilution technique. -/- (n = 7) and +/+ (n = 10) mice of comparable weight and age were used. Stroke volume (SV) and TPR were derived from CO, HR, and ABP by a standard formula. ABP (mm Hg) was significantly higher in -/- (132+/-4) (P < 0.0001) than in +/+ mice (95+/-2). CO (ml min(-1)), HR(beats min(-1))and SV (microl beat(-1)) did not differ significantly between -/- and +/+ mice (CO -/- = 7.3+/-0.5, +/+ = 8.3+/-0.6; HR -/- = 407+/-22, +/+ = 462+/-21; SV -/- = 17.6+/-1.1, +/+ = 17.6+/-1.7). However, TPR (mm Hg ml(-1) min(-1)) was significantly elevated in -/- mice (18.4+/-0.7) compared to +/+ mice (12.3+/-1) (P = 0.0003). Autonomic ganglion blockade with a mixture of hexamethonium and pentolinium was followed by comparable percent reductions in CO (-/- = 28+/-4, +/+ = 29+/-3), HR (-/- = 9+/-4, +/+ = 16+/-4) and SV(-/- = 21+/-4, +/+ = 15+/-6) in both genotypes. However, the concomitant decrease in ABP (%) in -/- (41+/-2) was significantly greater than in +/+ (23+/-4) mice (P = 0.0009) and was accompanied by a significant reduction in TPR. We conclude that the hypertension associated with lack of endogenous ANP is due to elevated TPR, which is determined by an increase in cardiovascular autonomic tone.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Atrial Natriuretic Factor / genetics
  • Atrial Natriuretic Factor / physiology*
  • Cardiac Output / physiology
  • Chronic Disease
  • Hemodynamics / physiology*
  • Hypertension / etiology*
  • Mice
  • Mice, Knockout
  • Vascular Resistance / physiology*

Substances

  • Atrial Natriuretic Factor