Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cancer Res. 1999 Mar 15;59(6):1225-30.

Lower prostate cancer risk in men with elevated plasma lycopene levels: results of a prospective analysis.

Author information

  • 1Department of Preventive Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA. pgann@nwu.edu

Abstract

Dietary consumption of the carotenoid lycopene (mostly from tomato products) has been associated with a lower risk of prostate cancer. Evidence relating other carotenoids, tocopherols, and retinol to prostate cancer risk has been equivocal. This prospective study was designed to examine the relationship between plasma concentrations of several major antioxidants and risk of prostate cancer. We conducted a nested case-control study using plasma samples obtained in 1982 from healthy men enrolled in the Physicians' Health Study, a randomized, placebo-controlled trial of aspirin and beta-carotene. Subjects included 578 men who developed prostate cancer within 13 years of follow-up and 1294 age- and smoking status-matched controls. We quantified the five major plasma carotenoid peaks (alpha- and beta-carotene, beta-cryptoxanthin, lutein, and lycopene) plus alpha- and gamma-tocopherol and retinol using high-performance liquid chromatography. Results for plasma beta-carotene are reported separately. Odds ratios (ORs), 95% confidence intervals (Cls), and Ps for trend were calculated for each quintile of plasma antioxidant using logistic regression models that allowed for adjustment of potential confounders and estimation of effect modification by assignment to either active beta-carotene or placebo in the trial. Lycopene was the only antioxidant found at significantly lower mean levels in cases than in matched controls (P = 0.04 for all cases). The ORs for all prostate cancers declined slightly with increasing quintile of plasma lycopene (5th quintile OR = 0.75, 95% CI = 0.54-1.06; P, trend = 0.12); there was a stronger inverse association for aggressive prostate cancers (5th quintile OR = 0.56, 95% CI = 0.34-0.91; P, trend = 0.05). In the placebo group, plasma lycopene was very strongly related to lower prostate cancer risk (5th quintile OR = 0.40; P, trend = 0.006 for aggressive cancer), whereas there was no evidence for a trend among those assigned to beta-carotene supplements. However, in the beta-carotene group, prostate cancer risk was reduced in each lycopene quintile relative to men with low lycopene and placebo. The only other notable association was a reduced risk of aggressive cancer with higher alpha-tocopherol levels that was not statistically significant. None of the associations for lycopene were confounded by age, smoking, body mass index, exercise, alcohol, multivitamin use, or plasma total cholesterol level. These results concur with a recent prospective dietary analysis, which identified lycopene as the carotenoid with the clearest inverse relation to the development of prostate cancer. The inverse association was particularly apparent for aggressive cancer and for men not consuming beta-carotene supplements. For men with low lycopene, beta-carotene supplements were associated with risk reductions comparable to those observed with high lycopene. These data provide further evidence that increased consumption of tomato products and other lycopene-containing foods might reduce the occurrence or progression of prostate cancer.

PMID:
10096552
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk