Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Immunol. 1999 Mar 15;162(6):3653-62.

Regulatory effects of endogenous protease inhibitors in acute lung inflammatory injury.

Author information

  • 1Department of Pathology, University of Michigan, Ann Arbor 48109, USA.

Abstract

Inflammatory lung injury is probably regulated by the balance between proteases and protease inhibitors together with oxidants and antioxidants, and proinflammatory and anti-inflammatory cytokines. Rat tissue inhibitor of metalloprotease-2 (TIMP-2) and secreted leukoprotease inhibitor (SLPI) were cloned, expressed, and shown to be up-regulated at the levels of mRNA and protein during lung inflammation in rats induced by deposition of IgG immune complexes. Using immunoaffinity techniques, endogenous TIMP-2 in the inflamed lung was shown to exist as a complex with 72- and 92-kDa metalloproteinases (MMP-2 and MMP-9). In inflamed lung both TIMP-2 and SLPI appeared to exist as enzyme inhibitor complexes. Lung expression of both TIMP-2 and SLPI appeared to involve endothelial and epithelial cells as well as macrophages. To assess how these endogenous inhibitors might affect the lung inflammatory response, animals were treated with polyclonal rabbit Abs to rat TIMP-2 or SLPI. This intervention resulted in significant intensification of lung injury (as revealed by extravascular leak of albumin) and substantially increased neutrophil accumulation, as determined by cell content in bronchoalveolar lavage (BAL) fluids. These events were correlated with increased levels of C5a-related chemotactic activity in BAL fluids, while BAL levels of TNF-alpha and chemokines were not affected by treatment with anti-TIMP-2 or anti-SLPI. The data suggest that endogenous TIMP-2 and SLPI dynamically regulate the intensity of lung inflammatory injury, doing so at least in part by affecting the generation of the inflammatory mediator, C5a.

PMID:
10092827
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk