Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 1999 Apr 1;19(7):2500-10.

Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-dependent kinase II autophosphorylation.

Author information

  • 1Interdepartmental Graduate Program for Neuroscience, University of California Los Angeles School of Medicine, Los Angeles, California 90095, USA.

Abstract

Activation of the Ca2+- and calmodulin-dependent protein kinase II (CaMKII) and its conversion into a persistently activated form by autophosphorylation are thought to be crucial events underlying the induction of long-term potentiation (LTP) by increases in postsynaptic Ca2+. Because increases in Ca2+ can also activate protein phosphatases that oppose persistent CaMKII activation, LTP induction may also require activation of signaling pathways that suppress protein phosphatase activation. Because the adenylyl cyclase (AC)-protein kinase A signaling pathway may provide a mechanism for suppressing protein phosphatase activation, we investigated the effects of AC activators on activity-dependent changes in synaptic strength and on levels of autophosphorylated alphaCaMKII (Thr286). In the CA1 region of hippocampal slices, briefly elevating extracellular Ca2+ induced an activity-dependent, transient potentiation of synaptic transmission that could be converted into a persistent potentiation by the addition of phosphatase inhibitors or AC activators. To examine activity-dependent changes in alphaCaMKII autophosphorylation, we replaced electrical presynaptic fiber stimulation with an increase in extracellular K+ to achieve a more global synaptic activation during perfusion of high Ca2+ solutions. In the presence of the AC activator forskolin or the protein phosphatase inhibitor calyculin A, this treatment induced a LTP-like synaptic potentiation and a persistent increase in autophosphorylated alphaCaMKII levels. In the absence of forskolin or calyculin A, it had no lasting effect on synaptic strength and induced a persistent decrease in autophosphorylated alphaCaMKII levels. Our results suggest that AC activation facilitates LTP induction by suppressing protein phosphatases and enabling a persistent increase in the levels of autophosphorylated CaMKII.

PMID:
10087064
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk