Format

Send to:

Choose Destination
See comment in PubMed Commons below
Leukemia. 1999 Mar;13(3):419-27.

Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B-ALL.

Author information

  • 1Department of Hematology, Portuguese Institute of Oncology, Lisbon.

Abstract

During the last two decades, major progress has been made in the technology of flow cytometry and in the availability of a large series of monoclonal antibodies against surface membrane and intracellular antigens. Flow cytometric immunophenotyping has become a diagnostic tool for the analysis of normal and malignant leukocytes and it has proven to be a reliable approach for the investigation of minimal residual disease (MRD) in leukemia patients during and after treatment. In order to standardize the flow cytometric detection of MRD in acute leukemia, a BIOMED-1 Concerted Action was initiated with the participation of six laboratories in five different European countries. This European co-operative study included the immunophenotypic characterization and enumeration of different precursor and mature B cell subpopulations in normal bone marrow (BM). The phenotypic profiles in normal B cell differentiation may form a frame of reference for the identification of aberrant phenotypes of precursor-B cell acute lymphoblastic leukemias (precursor-B-ALL) and may therefore be helpful in MRD detection. Thirty-eight normal BM samples were analyzed with five different pre-selected monoclonal antibody combinations: CD10/CD20/CD19, CD34/CD38/CD19, CD34/CD22/CD19, CD19/CD34/CD45 and TdT/CD10/CD19. Two CD19- immature subpopulations which coexpressed B cell-associated antigens were identified: CD34+/CD22+/CD19- and TdT+/CD10+/CD19-, which represented 0.11 +/- 0.09% and 0.04 +/- 0.05% of the total BM nucleated cells, respectively. These immunophenotypes may correspond to the earliest stages of B cell differentiation. In addition to these minor subpopulations, three major CD19+ B cell subpopulations were identified, representing three consecutive maturation stages; CD19dim/CD34+/TdT+/CD10bright/CD22dim/CD45dim /CD38bright/CD20- (subpopulation 1), CD19+/CD34-/TdT-/CD10+/CD22dim/CD45+/CD38bright/ CD20dim (subpopulation 2) and CD19+/CD34-/TdT-/CD10-/CD22bright/CD45bright/ CD38dim/CD20bright (subpopulation 3). The relative sizes of subpopulations 1 and 2 were found to be age related: at the age of 15 years, the phenotypic precursor-B cell profile in BM changed from the childhood 'immature' profile (large subpopulations 1 and 2/small subpopulation 3) to the adult 'mature' profile (small subpopulation 1 and 2/large subpopulation 3). When the immunophenotypically defined precursor-B cell subpopulations from normal BM samples are projected in fluorescence dot-plots, templates for the normal B cell differentiation pathways can be defined and so-called 'empty spaces' where no cell populations are located become evident. This allows discrimination between normal and malignant precursor-B cells and can therefore be used for MRD detection.

PMID:
10086733
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk