Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1999 Mar 26;274(13):8500-5.

Plasmin converts factor X from coagulation zymogen to fibrinolysis cofactor.

Author information

  • 1Research and Development Department, Canadian Blood Services and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1G 4J5, Canada. ed.pryzdial@bloodservices.ca

Abstract

Known anticoagulant pathways have been shown to exclusively inhibit blood coagulation cofactors and enzymes. In the current work, we first investigated the possibility of a novel anticoagulant mechanism that functions at the level of zymogen inactivation. Utilizing both clotting and chromogenic assays, the fibrinolysis protease plasmin was found to irreversibly inhibit the pivotal function of factor X (FX) in coagulation. This was due to cleavage at several sites, the location of which were altered by association of FX with procoagulant phospholipid (proPL). The final products were approximately 28 and approximately 47 kDa for proPL-bound and unbound FX, respectively, which did not have analogues when activated FX (FXa) was cleaved instead. We next investigated whether the FX derivatives could interact with the plasmin precursor plasminogen, and we found that plasmin exposed a binding site only on proPL-bound FX. The highest apparent affinity was for the 28-kDa fragment, which was identified as the light subunit disulfide linked to a small fragment of the heavy subunit (Met-296 to approximately Lys-330). After cleavage by plasmin, proPL-bound FX furthermore was observed to accelerate plasmin generation by tissue plasminogen activator. Thus, a feedback mechanism localized by proPL is suggested in which plasmin simultaneously inhibits FX clotting function and converts proPL-bound FX into a fibrinolysis cofactor. These data also provide the first evidence for an anticoagulant mechanism aimed directly at the zymogen FX.

PMID:
10085082
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk