Format

Send to

Choose Destination
See comment in PubMed Commons below
Development. 1999 Apr;126(8):1631-42.

Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects.

Author information

  • 1Departments of Pathology, Cell Biology and Molecular and Human Genetics, and Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA. mmatzuk@bcm.tmc.edu

Abstract

Smad5 has been implicated as a downstream signal mediator for several bone morphogenetic proteins (BMPs). To understand the in vivo function of Smad5, we generated mice deficient in Smad5 using embryonic stem (ES) cell technology. Homozygous mutant embryos die between E9.5 and E11.5, and display variable phenotypes. Morphological defects are first detected at E8.0 in the developing amnion, gut and heart (the latter defect being similar to BMP-2 knockout mice). At later stages, mutant embryos fail to undergo proper turning, have craniofacial and neural tube abnormalities, and are edematous. In addition, several extraembryonic lesions are observed. After E9.0, the yolk sacs of the mutants contain red blood cells but lack a well-organized vasculature, which is reminiscent of BMP-4, TGF-beta1 and TGF-beta type II receptor knockout mice. In addition, the allantois of many Smad5 mutants is fused to the chorion, but is not well-elongated. A unique feature of the Smad5 mutant embryos is that ectopic vasculogenesis and hematopoiesis is observed in the amnion, likely due to mislocation of allantois tissue. Despite the expression of Smad5 from gastrulation onwards, and in contrast to knockouts of Smad2 and Smad4, Smad5 only becomes essential later in extraembryonic and embryonic development.

PMID:
10079226
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk