Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuroscience. 1999 Mar;89(2):603-18.

Potassium channels of myenteric neurons in guinea-pig small intestine.

Author information

  • 1Department of Physiology, College of Medicine, The Ohio State University, Columbus 43210, USA.

Abstract

Patch-clamp recording was used to study rectifying K+ currents in myenteric neurons in short-term culture. In conditions that suppressed Ca2+ -activated K+ current, three kinds of voltage-activated K+ currents were identified by their voltage range of activation, inactivation, kinetics and pharmacology. These were A-type current, delayed outwardly rectifying current (I(K),dr) and inwardly rectifying current (I(K),ir). I(K),ir consisted of an instantaneous component followed by a time-dependent current that rapidly increased at potentials negative to -80 mV. Time-constant of activation was voltage-dependent with an e-fold decrease for a 31-mV hyperpolarization amounting to a decrease from 800 to 145 ms between -80 and -100 mV. I(K),ir did not inactivate. I(K),ir was abolished in K+ -free solution. Increases in external K+ increased I(K),ir conductance in direct relation to the square root of external K+ concentration. Activation kinetics were accelerated and the activation range shifted to more positive K+ equilibrium potentials. I(K),ir was suppressed by external Cs+ and Ba2+ in a concentration-dependent manner. Ca2+ and Mg+ were less effective than Ba2+. I(K),ir was unaffected by tetraethylammonium ions. I(K),dr was activated at membrane potentials positive to - 30 mV with an e-fold decrease in time-constant of activation from 145 to 16 ms between -20 and 30 mV. It was half-activated at 5 mV and fully activated at 50 mV. Inactivation was indiscernible during 2.5 s test pulses. I(K),dr was suppressed in a concentration-, but not voltage-dependent manner by either tetraethylammonium or 4-aminopyridine and was insensitive to Cs+. The results suggest that I(K),ir may be important in maintaining the high resting membrane potentials found in afterhyperpolarization-type enteric neurons. They also suggest importance of I(K),ir channels in augmentation of the large hyperpolarizing after-potentials in afterhyperpolarization-type neurons and the hyperpolarization associated with inhibitory postsynaptic potentials. I(K),dr in afterhyperpolarization-type enteric neurons has overall kinetics and voltage behaviour like delayed rectifier currents in other excitable cells where the currents can also be distinguished from A-type and Ca2+ -activated K+ current.

PMID:
10077339
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk