Send to:

Choose Destination
See comment in PubMed Commons below
Prog Biophys Mol Biol. 1999;71(1):59-90.

The role of calcium in the response of cardiac muscle to stretch.

Author information

  • 1School of Biomedical Sciences, University of Leeds, UK.


This review focuses on the complex interactions between two major regulators of cardiac function; Ca2+ and stretch. Initial consideration is given to the effect of stretch on myocardial contractility and details the rapid and slow increases in contractility. These are shown to be related to two diverse changes in Ca2+ handling (enhanced myofilament Ca2+ sensitivity and increased intracellular Ca2+ transient, respectively). Interaction between stretch and Ca2+ is also demonstrated with respect to the rhythm of cardiac contraction. Stretch has been shown to alter action potential configuration, generate stretch-activated arrhythmias, and increase the rate of beating of the sino-atrial node. A variety of Ca(2+)-dependent mechanisms including attenuation of Ca2+ extrusion via Na+/Ca2+ exchange, Ca2+ entry through stretch-activated channels (SACs) and mobilisation of intracellular Ca2+ stores have been proposed to account for the effect of stretch on rhythm. Finally, the interaction between stretch and Ca2+ in the secretion of natriuretic peptides and onset of hypertrophy is discussed. Evidence is presented that Ca2+ (entering through L-type Ca2+ channels or SACs, or released from sarcoplasmic reticular stores) influences secretion of both atrial and B-type natriuretic peptide; there is data to support both positive and negative modulation by Ca2+. Ca2+ also appears to be important in the pathway that leads to expression of precursors of hypertrophic protein synthesis. In conclusion, two of the major regulators of cardiac muscle function, Ca2+ and stretch, interact to produce effects on the heart; in general these effects appear to be additive.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk