Display Settings:

Format

Send to:

Choose Destination
J Biol Chem. 1999 Mar 12;274(11):7482-8.

Accelerated transcription of PRPS1 in X-linked overactivity of normal human phosphoribosylpyrophosphate synthetase.

Author information

  • 1Rheumatology Section, Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA.

Abstract

Phosphoribosylpyrophosphate (PRPP) synthetase (PRS) superactivity is an X-linked disorder characterized by gout with overproduction of purine nucleotides and uric acid. Study of the two X-linked PRS isoforms (PRS1 and PRS2) in cells from certain affected individuals has shown selectively increased concentrations of structurally normal PRS1 transcript and isoform, suggesting that this form of the disorder involves pretranslational dysregulation of PRPS1 expression and might be more appropriately termed overactivity of normal PRS. We applied Southern and Northern blot analyses and slot blotting of nuclear runoffs to delineate the process underlying aberrant PRPS1 expression in fibroblasts and lymphoblasts from patients with overactivity of normal PRS. Neither PRPS1 amplification nor altered stability or processing of PRS1 mRNA was identified, but PRPS1 transcription was increased relative to GAPDH (3- to 4-fold normal in fibroblasts; 1.9- to 2.4-fold in lymphoblasts) and PRPS2. Nearly coordinate relative increases in each process mediating transfer of genetic information from PRPS1 transcription to maximal PRS1 isoform expression in patient fibroblasts further supported the idea that accelerated PRPS1 transcription is the major aberration leading to PRS1 overexpression. In addition, modulated relative increases in PRS activities at suboptimal Pi concentration and in rates of PRPP and purine nucleotide synthesis in intact patient fibroblasts indicate that despite an intact allosteric mechanism of regulation of PRS activity, PRPS1 transcription is a major determinant of PRPP and purine synthesis. The genetic basis of disordered PRPS1 transcription remains unresolved; normal- and patient-derived PRPS1s share nucleotide sequence identity at least 850 base pairs 5' to the consensus transcription initiation site.

PMID:
10066814
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk