Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 1999 Feb;81(2):702-11.

An intrinsic oscillation in interneurons of the rat lateral geniculate nucleus.

Author information

  • 1Department of Anatomy, Neuroscience Training Program, Wm. S. Middleton VA Hospital, University of Wisconsin, Madison, Wisconsin 53706, USA.

Abstract

By using the whole cell patch recording technique in vitro, we examined the voltage-dependent firing patterns of 69 interneurons in the rat dorsal lateral geniculate nucleus (LGN). When held at a hyperpolarized membrane potential, all interneurons responded with a burst of action potentials. In 48 interneurons, larger current pulses produced a bursting oscillation. When relatively depolarized, some interneurons produced a tonic train of action potentials in response to a depolarizing current pulse. However, most interneurons produced only oscillations, regardless of polarization level. The oscillation was insensitive to the bath application of a combination of blockers to excitatory and inhibitory synaptic transmission, including 30 microM 6,7-dinitroquinoxaline-2,3-dione, 100 microM (+/-)-2-amino-5-phosphonopentanoic acid, 20 microM bicuculline, and 2 mM saclofen, suggesting an intrinsic event. The frequency of the oscillation in interneurons was dependent on the intensity of the injection current. Increasing current intensity increased the oscillation frequency. The maximal frequency of the oscillation was 5-15 Hz for most cells, with some ambiguity caused by the difficulty of precisely defining a transition from oscillatory to regular firing behavior. In contrast, the interneuron oscillation was little affected by preceding depolarizing and hyperpolarizing pulses. In addition to being elicited by depolarizing current injections, the oscillation could also be initiated by electrical stimulation of the optic tract when the interneurons were held at a depolarized membrane potential. This suggests that interneurons may be recruited into thalamic oscillations by synaptic inputs. These results indicate that interneurons may play a larger role in thalamic oscillations than was previously thought.

PMID:
10036271
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk