Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 1999 Feb 23;38(8):2514-22.

The core histone N-terminal domains are required for multiple rounds of catalytic chromatin remodeling by the SWI/SNF and RSC complexes.

Author information

  • 1Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester 01605, USA.

Abstract

SWI/SNF and RSC are large, distinct multi-subunit complexes that use the energy of ATP hydrolysis to disrupt nucleosome structure, facilitating the binding of transcription factors or restriction enzymes to nucleosomes [Cote, J., Quinn, J., Workman, J. L., and Peterson, C. L. (1994) Science 265, 53-60 (1); Lorch, Y., Cairns, B. R., Zhang, M., and Kornberg, R. D. (1998) Cell 94, 29-34 (2)]. Here we have used a quantitative assay to measure the activities of these ATP-dependent chromatin remodeling complexes using nucleosomal arrays reconstituted with hypoacetylated, hyperacetylated, or partially trypsinized histones. This assay is based on measuring the kinetics of restriction enzyme digestion of a site located within the central nucleosome of a positioned 11-mer array [Logie, C., and Peterson, C. L. (1997) EMBO J. 16, 6772-6782 (3)]. We find that the DNA-stimulated ATPase activities of SWI/SNF and RSC are not altered by the absence of the histone N-termini. Furthermore, ATP-dependent nucleosome remodeling is also equivalent on all three substrate arrays under reaction conditions where the concentrations of nucleosomal array and either SWI/SNF or RSC are equivalent. However, SWI/SNF and RSC cannot catalytically remodel multiple nucleosomal arrays in the absence of the histone termini, and this catalytic activity of SWI/SNF is decreased by histone hyperacetylation. These results indicate that the histone termini are important for SWI/SNF and RSC function; and, furthermore, our data defines a step in the remodeling cycle where the core histone termini exert their influence. This step appears to be after remodeling, but prior to intermolecular transfer of the remodelers to new arrays.

PMID:
10029546
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk