Send to:

Choose Destination
See comment in PubMed Commons below
Hypertension. 1999 Feb;33(2):732-9.

Angiotensin-converting enzyme is upregulated in the proximal tubules of rats with intense proteinuria.

Author information

  • 1Renal and Vascular Research Laboratory, Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain.


Persistent proteinuria is considered a deleterious prognostic factor in most progressive renal diseases. However, the mechanisms by which proteinuria induces renal damage remain undetermined. Since proximal tubular cells possess all the machinery to generate angiotensin II (Ang II), we approached the hypothesis that proteinuria could elicit the renal activation of the renin-angiotensin system in a model of intense proteinuria and interstitial nephritis induced by protein overload. After uninephrectomy (UNX), Wistar-Kyoto rats received daily injections of 1 g BSA or saline for 8 days. The mean peak of proteinuria was observed at the fourth day (538+/-89 versus 3+/-1 mg/24 h in UNX controls; n=12; P<0.05) and was increased during the whole study period (at the eighth day: 438+/-49 mg/24 h; n=12; P=NS). Morphological examination of the kidneys at the end of the study showed marked tubular lesions (atrophy, vacuolization, dilation, and casts), interstitial infiltration of mononuclear cells, and mesangial expansion. In relation to UNX control rats, renal cortex of BSA-overloaded rats showed an increment in the gene expression of angiotensinogen (2.4-fold) and angiotensin-converting enzyme (ACE) (2.1-fold), as well as a diminution in renin gene expression. No changes were observed in angiotensin type 1 (AT1) receptor mRNA expression in both groups of rats. By in situ reverse transcription-polymerase chain reaction and immunohistochemistry, ACE expression (gene and protein) was mainly localized in proximal and distal tubules and in the glomeruli. By immunohistochemistry, angiotensinogen was localized only in proximal tubules, and AT1 receptor was localized mainly in proximal and distal tubules. In the tubular brush border, an increase in ACE activity was also seen (5. 5+/-0.5 versus 3.1+/-0.7 U/mg protein x10(-4) in UNX control; n=7; P<0.05). Our results show that in the kidney of rats with intense proteinuria, ACE and angiotensinogen were upregulated, while gene expression of renin was inhibited and AT1 was unmodified. On the whole, these data suggest an increase in Ang II intrarenal generation. Since Ang II can elicit renal cell growth and matrix production through the activation of AT1 receptor, this peptide may be responsible for the tubulointerstitial lesions occurring in this model. These results suggest a novel mechanism by which proteinuria may participate in the progression of renal diseases.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk