Format

Send to:

Choose Destination
See comment in PubMed Commons below
Vis Neurosci. 1999 Jan-Feb;16(1):141-8.

Suppression of voltage-dependent K+ currents in retinal bipolar cells by ascorbate.

Author information

  • 1Department of Neurobiology and Behavior, State University of New York at Stony Brook, 11794-5230, USA.

Abstract

Ascorbate, often used as an antioxidant in neural studies, may also serve as a neuromodulator in the vertebrate central nervous system (CNS), in that it modulates the synaptic actions of glutamate and dopamine. Retina of fish contain a high concentration of ascorbate. The release and/or uptake of neurotransmitters are related to membrane potential, which to a large extent is determined by the activity of K+ channels. As retinal bipolar cells are subject to synaptic input from glutamatergic and dopaminergic sources, the effects of ascorbate on voltage-dependent K+ currents (I(K)(v)) of the mixed rod-cone ON-center bipolar cells (Mb) in goldfish retinal slices were studied using whole-cell recording techniques. I(K)(V) was suppressed reversibly 60% by 100-200 microM ascorbate. The effect of ascorbate was not due to changes in pH, oxidative stress, lipid peroxidation, any Ca2+-dependent or Na+-dependent action. However, the suppressive effect of ascorbate was blocked by cholera toxin and Wiptide, a protein kinase A (PKA) inhibitor. It is concluded that ascorbate, at physiological concentrations, inhibits I(K)(V) of bipolar cells via a Gs-protein-PKA system. This effect of ascorbate should be taken into account when using ascorbate as an antioxidant in retinal studies involving dopamine.

PMID:
10022485
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Cambridge University Press
    Loading ...
    Write to the Help Desk