• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of embojLink to Publisher's site
EMBO J. Jun 1992; 11(6): 2087–2093.
PMCID: PMC556675

ARD1 and NAT1 proteins form a complex that has N-terminal acetyltransferase activity.

Abstract

Two yeast genes, ARD1 and NAT1, are required for the expression of an N-terminal protein acetyltransferase. This activity is required for full repression of the silent mating type locus HML, for sporulation, and for entry into G0. While the NAT1 gene product is thought to be the catalytic subunit of the enzyme, the role of the ARD1 protein has remained unclear. We have used epitope tagged derivatives of ARD1 and NAT1 to provide biochemical evidence for the formation of an ARD1-NAT1 complex, and to show that both proteins are required for the N-terminal acetyltransferase activity. We also present evidence for the formation of ARD1-ARD1 homodimers. Deletion analysis suggests that the C-terminal region of ARD1 may be involved in the formation of both ARD1-ARD1 and ARD1-NAT1 complexes.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.6M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Brent R, Ptashne M. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell. 1985 Dec;43(3 Pt 2):729–736. [PubMed]
  • Bürglin TR. The yeast regulatory gene PHO2 encodes a homeo box. Cell. 1988 May 6;53(3):339–340. [PubMed]
  • Evan GI, Lewis GK, Ramsay G, Bishop JM. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol. 1985 Dec;5(12):3610–3616. [PMC free article] [PubMed]
  • Field J, Nikawa J, Broek D, MacDonald B, Rodgers L, Wilson IA, Lerner RA, Wigler M. Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol Cell Biol. 1988 May;8(5):2159–2165. [PMC free article] [PubMed]
  • Guarente L, Yocum RR, Gifford P. A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7410–7414. [PMC free article] [PubMed]
  • Hope IA, Struhl K. Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell. 1986 Sep 12;46(6):885–894. [PubMed]
  • Lee FJ, Lin LW, Smith JA. Purification and characterization of an N alpha-acetyltransferase from Saccharomyces cerevisiae. J Biol Chem. 1988 Oct 15;263(29):14948–14955. [PubMed]
  • Lee FJ, Lin LW, Smith JA. N alpha acetylation is required for normal growth and mating of Saccharomyces cerevisiae. J Bacteriol. 1989 Nov;171(11):5795–5802. [PMC free article] [PubMed]
  • Lee FJ, Lin LW, Smith JA. N alpha-acetyltransferase deficiency alters protein synthesis in Saccharomyces cerevisiae. FEBS Lett. 1989 Oct 9;256(1-2):139–142. [PubMed]
  • Ma J, Ptashne M. A new class of yeast transcriptional activators. Cell. 1987 Oct 9;51(1):113–119. [PubMed]
  • Mullen JR, Kayne PS, Moerschell RP, Tsunasawa S, Gribskov M, Colavito-Shepanski M, Grunstein M, Sherman F, Sternglanz R. Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast. EMBO J. 1989 Jul;8(7):2067–2075. [PMC free article] [PubMed]
  • Park EC, Szostak JW. Point mutations in the yeast histone H4 gene prevent silencing of the silent mating type locus HML. Mol Cell Biol. 1990 Sep;10(9):4932–4934. [PMC free article] [PubMed]
  • Park EC, Finley D, Szostak JW. A strategy for the generation of conditional mutations by protein destabilization. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1249–1252. [PMC free article] [PubMed]
  • Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. [PubMed]
  • Whiteway M, Szostak JW. The ARD1 gene of yeast functions in the switch between the mitotic cell cycle and alternative developmental pathways. Cell. 1985 Dec;43(2 Pt 1):483–492. [PubMed]
  • Whiteway M, Freedman R, Van Arsdell S, Szostak JW, Thorner J. The yeast ARD1 gene product is required for repression of cryptic mating-type information at the HML locus. Mol Cell Biol. 1987 Oct;7(10):3713–3722. [PMC free article] [PubMed]

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...