• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of embojLink to Publisher's site
EMBO J. Aug 1990; 9(8): 2409–2413.
PMCID: PMC552265

Functionally distinct insulin receptors generated by tissue-specific alternative splicing.

Abstract

Cloning of the insulin receptor cDNA has earlier revealed the existence of two alternative forms of the receptor differing by the presence or absence of 12 amino acids near the C-terminus of the receptor alpha-subunit. This insert has been shown by others to be encoded by a discrete exon, and alternative splicing of this exon leads to tissue-specific expression of two receptor isoforms. We have studied the functional significance of the receptor isoforms and have confirmed that they are generated by alternative splicing. When cDNAs encoding the two forms of the insulin receptors are expressed in Rat 1 cells, the receptor lacking the insert (HIR-A) has a significantly higher affinity for insulin than the receptor with the insert (HIR-B). This difference in affinity is maintained when insulin binding activity is assayed in solution using detergent solubilized, partially purified receptors. These data, combined with the tissue specificity of HIR-A and HIR-B expression, suggest that alternative splicing may result in the modulation of insulin metabolism or responsiveness by different tissues.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Chou CK, Dull TJ, Russell DS, Gherzi R, Lebwohl D, Ullrich A, Rosen OM. Human insulin receptors mutated at the ATP-binding site lack protein tyrosine kinase activity and fail to mediate postreceptor effects of insulin. J Biol Chem. 1987 Feb 5;262(4):1842–1847. [PubMed]
  • Ebina Y, Ellis L, Jarnagin K, Edery M, Graf L, Clauser E, Ou JH, Masiarz F, Kan YW, Goldfine ID, et al. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell. 1985 Apr;40(4):747–758. [PubMed]
  • Ebina Y, Araki E, Taira M, Shimada F, Mori M, Craik CS, Siddle K, Pierce SB, Roth RA, Rutter WJ. Replacement of lysine residue 1030 in the putative ATP-binding region of the insulin receptor abolishes insulin- and antibody-stimulated glucose uptake and receptor kinase activity. Proc Natl Acad Sci U S A. 1987 Feb;84(3):704–708. [PMC free article] [PubMed]
  • Ellis L, Clauser E, Morgan DO, Edery M, Roth RA, Rutter WJ. Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucose. Cell. 1986 Jun 6;45(5):721–732. [PubMed]
  • McClain DA, Maegawa H, Lee J, Dull TJ, Ulrich A, Olefsky JM. A mutant insulin receptor with defective tyrosine kinase displays no biologic activity and does not undergo endocytosis. J Biol Chem. 1987 Oct 25;262(30):14663–14671. [PubMed]
  • Moller DE, Yokota A, Caro JF, Flier JS. Tissue-specific expression of two alternatively spliced insulin receptor mRNAs in man. Mol Endocrinol. 1989 Aug;3(8):1263–1269. [PubMed]
  • Munson PJ, Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. [PubMed]
  • Sasaoka T, Shigeta Y, Takata Y, Sugibayashi M, Hisatomi A, Kobayashi M. Binding specificity and intramolecular signal transmission of uncleaved insulin proreceptor in transformed lymphocytes from a patient with extreme insulin resistance. Diabetologia. 1989 Jun;32(6):371–377. [PubMed]
  • Seino S, Bell GI. Alternative splicing of human insulin receptor messenger RNA. Biochem Biophys Res Commun. 1989 Feb 28;159(1):312–316. [PubMed]
  • Ullrich A, Bell JR, Chen EY, Herrera R, Petruzzelli LM, Dull TJ, Gray A, Coussens L, Liao YC, Tsubokawa M, et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature. 313(6005):756–761. [PubMed]
  • Whittaker J, Okamoto AK, Thys R, Bell GI, Steiner DF, Hofmann CA. High-level expression of human insulin receptor cDNA in mouse NIH 3T3 cells. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5237–5241. [PMC free article] [PubMed]
  • Yarden Y, Ullrich A. Growth factor receptor tyrosine kinases. Annu Rev Biochem. 1988;57:443–478. [PubMed]
  • Yip CC, Hsu H, Patel RG, Hawley DM, Maddux BA, Goldfine ID. Localization of the insulin-binding site to the cysteine-rich region of the insulin receptor alpha-subunit. Biochem Biophys Res Commun. 1988 Nov 30;157(1):321–329. [PubMed]

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...