• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Aug 1990; 87(16): 6238–6242.
PMCID: PMC54508

Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis.

Abstract

Catabolite repression of the Bacillus subtilis alpha-amylase gene (amyE) involves an operator sequence located just downstream of the promoter (amyR), overlapping the transcription start site. Oligonucleotide site-directed mutagenesis of this sequence identified bases required for catabolite repression. Two mutations increased both the 2-fold symmetry of the operator and the repression ratio. Although many mutations reduced the repression ratio 3- to 11-fold, some also caused a 2-fold or greater increase in amylase production. Others caused hyperproduction without affecting catabolite repression. Homologous sequences in other catabolite-repressed B. subtilis promoters suggest a common regulatory site may be involved in catabolite repression.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • MAGASANIK B. Catabolite repression. Cold Spring Harb Symp Quant Biol. 1961;26:249–256. [PubMed]
  • Adhya S, Garges S. How cyclic AMP and its receptor protein act in Escherichia coli. Cell. 1982 Jun;29(2):287–289. [PubMed]
  • de Crombrugghe B, Busby S, Buc H. Cyclic AMP receptor protein: role in transcription activation. Science. 1984 May 25;224(4651):831–838. [PubMed]
  • Ebright RH, Cossart P, Gicquel-Sanzey B, Beckwith J. Mutations that alter the DNA sequence specificity of the catabolite gene activator protein of E. coli. Nature. 1984 Sep 20;311(5983):232–235. [PubMed]
  • Ebright RH, Cossart P, Gicquel-Sanzey B, Beckwith J. Molecular basis of DNA sequence recognition by the catabolite gene activator protein: detailed inferences from three mutations that alter DNA sequence specificity. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7274–7278. [PMC free article] [PubMed]
  • Straney DC, Straney SB, Crothers DM. Synergy between Escherichia coli CAP protein and RNA polymerase in the lac promoter open complex. J Mol Biol. 1989 Mar 5;206(1):41–57. [PubMed]
  • Setlow P. Inability of detect cyclic AMP in vegetative or sporulating cells or dormant spores of Bacillus megaterium. Biochem Biophys Res Commun. 1973 May 15;52(2):365–372. [PubMed]
  • Setlow B, Setlow P. Levels of cyclic GMP in dormant, germinated, and outgrowing spores and growing and sporulating cells of Bacillus megaterium. J Bacteriol. 1978 Oct;136(1):433–436. [PMC free article] [PubMed]
  • Melin L, Rutberg L, von Gabain A. Transcriptional and posttranscriptional control of the Bacillus subtilis succinate dehydrogenase operon. J Bacteriol. 1989 Apr;171(4):2110–2115. [PMC free article] [PubMed]
  • Fujita Y, Miwa Y. Identification of an operator sequence for the Bacillus subtilis gnt operon. J Biol Chem. 1989 Mar 5;264(7):4201–4206. [PubMed]
  • Rosenkrantz MS, Dingman DW, Sonenshein AL. Bacillus subtilis citB gene is regulated synergistically by glucose and glutamine. J Bacteriol. 1985 Oct;164(1):155–164. [PMC free article] [PubMed]
  • Fisher SH, Magasanik B. 2-Ketoglutarate and the regulation of aconitase and histidase formation in Bacillus subtilis. J Bacteriol. 1984 Apr;158(1):379–382. [PMC free article] [PubMed]
  • Martin I, Debarbouille M, Klier A, Rapoport G. Induction and metabolite regulation of levanase synthesis in Bacillus subtilis. J Bacteriol. 1989 Apr;171(4):1885–1892. [PMC free article] [PubMed]
  • Murphy N, McConnell DJ, Cantwell BA. The DNA sequence of the gene and genetic control sites for the excreted B. subtilis enzyme beta-glucanase. Nucleic Acids Res. 1984 Jul 11;12(13):5355–5367. [PMC free article] [PubMed]
  • Nicholson WL, Park YK, Henkin TM, Won M, Weickert MJ, Gaskell JA, Chambliss GH. Catabolite repression-resistant mutations of the Bacillus subtilis alpha-amylase promoter affect transcription levels and are in an operator-like sequence. J Mol Biol. 1987 Dec 20;198(4):609–618. [PubMed]
  • Freese E, Klofat W, Galliers E. Commitment to sporulation and induction of glucose-phosphoenolpyruvate-transferase. Biochim Biophys Acta. 1970 Nov 24;222(2):265–289. [PubMed]
  • Schaeffer P, Millet J, Aubert JP. Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A. 1965 Sep;54(3):704–711. [PMC free article] [PubMed]
  • Yamashita S, Kawamura F, Yoshikawa H, Takahashi H, Kobayashi Y, Saito H. Dissection of the expression signals of the spoA gene of Bacillus subtilis: glucose represses sporulation-specific expression. J Gen Microbiol. 1989 May;135(5):1335–1345. [PubMed]
  • Weickert MJ, Chambliss GH. Genetic analysis of the promoter region of the Bacillus subtilis alpha-amylase gene. J Bacteriol. 1989 Jul;171(7):3656–3666. [PMC free article] [PubMed]
  • Nicholson WL, Chambliss GH. Isolation and characterization of a cis-acting mutation conferring catabolite repression resistance to alpha-amylase synthesis in Bacillus subtilis. J Bacteriol. 1985 Mar;161(3):875–881. [PMC free article] [PubMed]
  • Yang M, Galizzi A, Henner D. Nucleotide sequence of the amylase gene from Bacillus subtilis. Nucleic Acids Res. 1983 Jan 25;11(2):237–249. [PMC free article] [PubMed]
  • Sadler JR, Sasmor H, Betz JL. A perfectly symmetric lac operator binds the lac repressor very tightly. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6785–6789. [PMC free article] [PubMed]
  • Brennan RG, Matthews BW. The helix-turn-helix DNA binding motif. J Biol Chem. 1989 Feb 5;264(4):1903–1906. [PubMed]
  • Pabo CO, Sauer RT. Protein-DNA recognition. Annu Rev Biochem. 1984;53:293–321. [PubMed]
  • Schleif R. DNA binding by proteins. Science. 1988 Sep 2;241(4870):1182–1187. [PubMed]
  • Takeda Y, Ohlendorf DH, Anderson WF, Matthews BW. DNA-binding proteins. Science. 1983 Sep 9;221(4615):1020–1026. [PubMed]
  • Helmann JD, Wang Y, Mahler I, Walsh CT. Homologous metalloregulatory proteins from both gram-positive and gram-negative bacteria control transcription of mercury resistance operons. J Bacteriol. 1989 Jan;171(1):222–229. [PMC free article] [PubMed]
  • Wittman V, Wong HC. Regulation of the penicillinase genes of Bacillus licheniformis: interaction of the pen repressor with its operators. J Bacteriol. 1988 Jul;170(7):3206–3212. [PMC free article] [PubMed]
  • Kawazu T, Nakanishi Y, Uozumi N, Sasaki T, Yamagata H, Tsukagoshi N, Udaka S. Cloning and nucleotide sequence of the gene coding for enzymatically active fragments of the Bacillus polymyxa beta-amylase. J Bacteriol. 1987 Apr;169(4):1564–1570. [PMC free article] [PubMed]
  • Uozumi N, Sakurai K, Sasaki T, Takekawa S, Yamagata H, Tsukagoshi N, Udaka S. A single gene directs synthesis of a precursor protein with beta- and alpha-amylase activities in Bacillus polymyxa. J Bacteriol. 1989 Jan;171(1):375–382. [PMC free article] [PubMed]
  • Nakajima R, Imanaka T, Aiba S. Nucleotide sequence of the Bacillus stearothermophilus alpha-amylase gene. J Bacteriol. 1985 Jul;163(1):401–406. [PMC free article] [PubMed]
  • Laoide BM, Chambliss GH, McConnell DJ. Bacillus licheniformis alpha-amylase gene, amyL, is subject to promoter-independent catabolite repression in Bacillus subtilis. J Bacteriol. 1989 May;171(5):2435–2442. [PMC free article] [PubMed]
  • Lehtovaara P, Ulmanen I, Palva I. In vivo transcription initiation and termination sites of an alpha-amylase gene from Bacillus amyloliquefaciens cloned in Bacillus subtilis. Gene. 1984 Oct;30(1-3):11–16. [PubMed]
  • Takkinen K, Pettersson RF, Kalkkinen N, Palva I, Söderlund H, Käriäinen L. Amino acid sequence of alpha-amylase from Bacillus amyloliquefaciens deduced from the nucleotide sequence of the cloned gene. J Biol Chem. 1983 Jan 25;258(2):1007–1013. [PubMed]
  • Fujita Y, Fujita T. Identification and nucleotide sequence of the promoter region of the Bacillus subtilis gluconate operon. Nucleic Acids Res. 1986 Feb 11;14(3):1237–1252. [PMC free article] [PubMed]
  • Fujita Y, Fujita T, Miwa Y, Nihashi J, Aratani Y. Organization and transcription of the gluconate operon, gnt, of Bacillus subtilis. J Biol Chem. 1986 Oct 15;261(29):13744–13753. [PubMed]
  • Melin L, Magnusson K, Rutberg L. Identification of the promoter of the Bacillus subtilis sdh operon. J Bacteriol. 1987 Jul;169(7):3232–3236. [PMC free article] [PubMed]
  • Oda M, Sugishita A, Furukawa K. Cloning and nucleotide sequences of histidase and regulatory genes in the Bacillus subtilis hut operon and positive regulation of the operon. J Bacteriol. 1988 Jul;170(7):3199–3205. [PMC free article] [PubMed]
  • Sloma A, Ally A, Ally D, Pero J. Gene encoding a minor extracellular protease in Bacillus subtilis. J Bacteriol. 1988 Dec;170(12):5557–5563. [PMC free article] [PubMed]
  • Wong SL, Wang LF, Doi RH. Cloning and nucleotide sequence of senN, a novel 'Bacillus natto' (B. subtilis) gene that regulates expression of extracellular protein genes. J Gen Microbiol. 1988 Dec;134(12):3269–3276. [PubMed]
  • Marahiel MA, Zuber P, Czekay G, Losick R. Identification of the promoter for a peptide antibiotic biosynthesis gene from Bacillus brevis and its regulation in Bacillus subtilis. J Bacteriol. 1987 May;169(5):2215–2222. [PMC free article] [PubMed]
  • Vasantha N, Thompson LD, Rhodes C, Banner C, Nagle J, Filpula D. Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J Bacteriol. 1984 Sep;159(3):811–819. [PMC free article] [PubMed]
  • Henkin TM, Sonenshein AL. Mutations of the Escherichia coli lacUV5 promoter resulting in increased expression in Bacillus subtilis. Mol Gen Genet. 1987 Oct;209(3):467–474. [PubMed]
  • Kammerer W, Deuschle U, Gentz R, Bujard H. Functional dissection of Escherichia coli promoters: information in the transcribed region is involved in late steps of the overall process. EMBO J. 1986 Nov;5(11):2995–3000. [PMC free article] [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...