• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Jun 1990; 87(12): 4688–4691.
PMCID: PMC54182

Taxeopody in the carpus and tarsus of Oligocene Pliohyracidae (Mammalia: Hyracoidea) and the phyletic position of hyraxes.

Abstract

Recent hyracoids and elephants share a taxeopode arrangement of tarsal and carpal bones, a condition in which bones are aligned with minimal interlocking between adjacent elements. Taxeopody has often been interpreted as a synapomorphy reflecting a close phyletic link between Hyracoidea and Proboscidea, but recently it has been suggested [Fischer, M. S. (1986) Cour. Forschungsinst. Senckenberg 84, 1-132] that hyracoid taxeopody is an independent acquisition resulting from selection favoring increased midcarpal and midtarsal rotation and that Hyracoidea is actually allied with Perissodactyla. As a test of this hypothesis, isolated carpal and tarsal bones of primitive Oligocene hyracoids from the Fayum, Egypt, have been examined to determine whether these indicate a taxeopode or diplarthral carpus and tarsus. Four complete astragali from the Fayum, representing at least three taxa, show a single, slightly convex articular surface on the head for articulation with the navicular and lack a facet for the cuboid. Two complete magna representing two species have a single proximal facet for articulation with the lunar, and they lack a facet for the scaphoid. Thus, both the carpus and tarsus of Fayum hyracoids are taxeopode. Taxeopody in hyracoids cannot be attributed to selection for carpal and tarsal rotation in climbers because the Oligocene, Miocene, and Recent species show great diversity in body size and probably locomotor specializations, despite relative uniformity of structure in the carpus and tarsus. The shared taxeopody of hyracoids and proboscideans, along with other osteological characters and similarities in hemoglobin, eye lens proteins, and other molecules, all suggest that Hyracoidea belongs within Paenungulata.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (899K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Shoshani J. Mammalian phylogeny: comparison of morphological and molecular results. Mol Biol Evol. 1986 May;3(3):222–242. [PubMed]
  • de Jong WW, Zweers A, Goodman M. Relationship of aardvark to elephants, hyraxes and sea cows from alpha-crystallin sequences. Nature. 1981 Aug 6;292(5823):538–540. [PubMed]
  • Kleinschmidt T, Braunitzer G. Die Primärstruktur des Hämoglobins vom Abessinischen Klippschliefer (Procavia habessinica, Hyracoidea): insertion von Glutamin in den alpha-Ketten. Hoppe Seylers Z Physiol Chem. 1983 Sep;364(9):1303–1313. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...