• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. May 1990; 87(9): 3566–3573.
PMCID: PMC53943

Sexual reproduction as an adaptation to resist parasites (a review).

Abstract

Darwinian theory has yet to explain adequately the fact of sex. If males provide little or no aid to offspring, a high (up to 2-fold) extra average fitness has to emerge as a property of a sexual parentage if sex is to be stable. The advantage must presumably come from recombination but has been hard to identify. It may well lie in the necessity to recombine defenses to defeat numerous parasites. A model demonstrating this works best for contesting hosts whose defense polymorphisms are constrained to low mutation rates. A review of the literature shows that the predictions of parasite coevolution fit well with the known ecology of sex. Moreover, parasite coevolution is superior to previous models of the evolution of sex by supporting the stability of sex under the following challenging conditions: very low fecundity, realistic patterns of genotype fitness and changing environment, and frequent mutation to parthenogenesis, even while sex pays the full 2-fold cost.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.8M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • May RM, Anderson RM. Epidemiology and genetics in the coevolution of parasites and hosts. Proc R Soc Lond B Biol Sci. 1983 Oct 22;219(1216):281–313. [PubMed]
  • Tooby J. Pathogens, polymorphism, and the evolution of sex. J Theor Biol. 1982 Aug 21;97(4):557–576. [PubMed]
  • Bremermann HJ. The adaptive significance of sexuality. Experientia. 1985 Oct 15;41(10):1245–1254. [PubMed]
  • Manning JT. Males and the advantage of sex. J Theor Biol. 1984 May 21;108(2):215–220. [PubMed]
  • Kondrashov AS. Deleterious mutations and the evolution of sexual reproduction. Nature. 1988 Dec 1;336(6198):435–440. [PubMed]
  • Hamilton WD. The moulding of senescence by natural selection. J Theor Biol. 1966 Sep;12(1):12–45. [PubMed]
  • Clausen H, Hakomori S. ABH and related histo-blood group antigens; immunochemical differences in carrier isotypes and their distribution. Vox Sang. 1989;56(1):1–20. [PubMed]
  • Pereira FE, Bortolini ER, Carneiro JL, da Silva CR, Neves RC. A, B, O blood groups and hepatosplenic form of schistosomiasis mansoni (Symmer's fibrosis). Trans R Soc Trop Med Hyg. 1979;73(2):238–238. [PubMed]
  • Barnes GL, Kay R. Blood-groups in giardiasis. Lancet. 1977 Apr 9;1(8015):808–808. [PubMed]
  • Decker-Jackson JE, Honigberg BM. Glycoproteins released by Leishmania donovani: immunologic relationships with host and bacterial antigens and preliminary biochemical analysis. J Protozool. 1978 Nov;25(4):514–525. [PubMed]
  • Greenblatt CL, Kark JD, Schnur LF, Slutzky GM. Do leishmania serotypes mimic human blood group antigens? Lancet. 1981 Feb 28;1(8218):505–506. [PubMed]
  • Overfield T, Klauber MR. Prevalence tuberculosis in Eskimos having blood group B gene. Hum Biol. 1980 Feb;52(1):87–92. [PubMed]
  • Blackwell CC, Jónsdóttir K, Hanson M, Todd WT, Chaudhuri AK, Mathew B, Brettle RP, Weir DM. Non-secretion of ABO antigens predisposing to infection by Neisseria meningitidis and Streptococcus pneumoniae. Lancet. 1986 Aug 2;2(8501):284–285. [PubMed]
  • Blackwell CC, Weir DM, James VS, Cartwright KA, Stuart JM, Jones DM. The Stonehouse study: secretor status and carriage of Neisseria species. Epidemiol Infect. 1989 Feb;102(1):1–10. [PMC free article] [PubMed]
  • Blackwell CC, Jonsdottir K, Hanson MF, Weir DM. Non-secretion of ABO blood group antigens predisposing to infection by Haemophilus influenzae. Lancet. 1986 Sep 20;2(8508):687–687. [PubMed]
  • Clemens JD, Sack DA, Harris JR, Chakraborty J, Khan MR, Huda S, Ahmed F, Gomes J, Rao MR, Svennerholm AM, et al. ABO blood groups and cholera: new observations on specificity of risk and modification of vaccine efficacy. J Infect Dis. 1989 Apr;159(4):770–773. [PubMed]
  • Esterre P, Dedet JP. The relationship of blood-group type to American cutaneous leishmaniasis. Ann Trop Med Parasitol. 1989 Aug;83(4):345–348. [PubMed]
  • Albright JF, Albright JW. Natural resistance to animal parasites. Contemp Top Immunobiol. 1984;12:1–52. [PubMed]
  • Boyle JF, Weismiller DG, Holmes KV. Genetic resistance to mouse hepatitis virus correlates with absence of virus-binding activity on target tissues. J Virol. 1987 Jan;61(1):185–189. [PMC free article] [PubMed]
  • Rothwell TL, Pope SE, Collins GH. Trixacarus caviae infection of guinea pigs with genetically determined differences in susceptibility to Trichostrongylus colubriformis infection. Int J Parasitol. 1989 May;19(3):347–348. [PubMed]
  • Skamene E. Genetic control of susceptibility to mycobacterial infections. Rev Infect Dis. 1989 Mar-Apr;11 (Suppl 2):S394–S399. [PubMed]
  • Bumstead N, Huggins MB, Cook JK. Genetic differences in susceptibility to a mixture of avian infectious bronchitis virus and Escherichia coli. Br Poult Sci. 1989 Mar;30(1):39–48. [PubMed]
  • White J, Herman A, Pullen AM, Kubo R, Kappler JW, Marrack P. The V beta-specific superantigen staphylococcal enterotoxin B: stimulation of mature T cells and clonal deletion in neonatal mice. Cell. 1989 Jan 13;56(1):27–35. [PubMed]
  • Eshel I, Akin E. Coevolutionary instability of mixed Nash solutions. J Math Biol. 1983;18(2):123–133. [PubMed]
  • Lewis JW. On the coevolution of pathogen and host: I. General theory of discrete time coevolution. J Theor Biol. 1981 Dec 21;93(4):927–951. [PubMed]
  • Anderson RM, May RM. Coevolution of hosts and parasites. Parasitology. 1982 Oct;85(Pt 2):411–426. [PubMed]
  • Sasaki A, Iwasa Y. Optimal recombination rate in fluctuating environments. Genetics. 1987 Feb;115(2):377–388. [PMC free article] [PubMed]
  • Treisman M. The evolution of sexual reproduction: a model which assumes individual selection. J Theor Biol. 1976 Aug 7;60(2):421–431. [PubMed]
  • Crow JF, Kimura M. Efficiency of truncation selection. Proc Natl Acad Sci U S A. 1979 Jan;76(1):396–399. [PMC free article] [PubMed]
  • Nevo E. Genetic variation in natural populations: patterns and theory. Theor Popul Biol. 1978 Feb;13(1):121–177. [PubMed]
  • Kondrashov AS. Selection against harmful mutations in large sexual and asexual populations. Genet Res. 1982 Dec;40(3):325–332. [PubMed]
  • Lokki J, Saura A, Lankinen P, Suomalainen E. Genetic polymorphism and evolution in parthenogenetic animals. VI. Diploid and triploid Polydrosus mollis (Coleoptera: Curculionidae). Hereditas. 1976 Jun 14;82(2):209–216. [PubMed]
  • Walker I. The evolution of sexual reproduction as a repair mechanism. Part I. A model for self-repair and its biological implications. Acta Biotheor. 1978;27(3-4):133–158. [PubMed]
  • Kirkpatrick M, Jenkins CD. Genetic segregation and the maintenance of sexual reproduction. Nature. 1989 May 25;339(6222):300–301. [PubMed]
  • Bull JJ, Harvey PH. Evolutionary biology. A new reason for having sex. Nature. 1989 May 25;339(6222):260–261. [PubMed]
  • STEBBINS GL. Longevity, habitat. and release of genetic variability in the higher plants. Cold Spring Harb Symp Quant Biol. 1958;23:365–378. [PubMed]
  • Lane DP, Hoeffler WK. SV40 large T shares an antigenic determinant with a cellular protein of molecular weight 68,000. Nature. 1980 Nov 13;288(5787):167–170. [PubMed]
  • Lane D, Koprowski H. Molecular recognition and the future of monoclonal antibodies. Nature. 1982 Mar 18;296(5854):200–202. [PubMed]
  • Haspel MV, Onodera T, Prabhakar BS, Horita M, Suzuki H, Notkins AL. Virus-induced autoimmunity: monoclonal antibodies that react with endocrine tissues. Science. 1983 Apr 15;220(4594):304–306. [PubMed]
  • Vidović D, Matzinger P. Unresponsiveness to a foreign antigen can be caused by self-tolerance. Nature. 1988 Nov 17;336(6196):222–225. [PubMed]
  • Leist T, Althage A, Haenseler E, Hengartner H, Zinkernagel RM. Major histocompatibility complex-linked susceptibility or resistance to disease caused by a noncytopathic virus varies with the disease parameter evaluated. J Exp Med. 1989 Jul 1;170(1):269–277. [PMC free article] [PubMed]
  • Singh VK, Yamaki K, Abe T, Shinohara T. Molecular mimicry between uveitopathogenic site of retinal S-antigen and Escherichia coli protein: induction of experimental autoimmune uveitis and lymphocyte cross-reaction. Cell Immunol. 1989 Aug;122(1):262–273. [PubMed]
  • Guillet JG, Lai MZ, Briner TJ, Buus S, Sette A, Grey HM, Smith JA, Gefter ML. Immunological self, nonself discrimination. Science. 1987 Feb 20;235(4791):865–870. [PubMed]
  • Hill RE, Hastie ND. Accelerated evolution in the reactive centre regions of serine protease inhibitors. Nature. 1987 Mar 5;326(6108):96–99. [PubMed]
  • Laskowski M, Jr, Kato I, Ardelt W, Cook J, Denton A, Empie MW, Kohr WJ, Park SJ, Parks K, Schatzley BL, et al. Ovomucoid third domains from 100 avian species: isolation, sequences, and hypervariability of enzyme-inhibitor contact residues. Biochemistry. 1987 Jan 13;26(1):202–221. [PubMed]
  • Barran LR, Miller RW. Temperature-induced alterations in phospholipids of Fusarium oxysporum f. sp. lycopersici. Can J Microbiol. 1976 Apr;22(4):557–562. [PubMed]
  • Barnicot NA. Some biochemical and serological aspects of primate evolution. Sci Prog. 1969 Winter;57(228):459–493. [PubMed]
  • Tashian RE, Shreffler DC, Shows TB. Genetic and phylogenetic variation in the different molecular forms of mammalian erythrocyte carbonic anhydrases. Ann N Y Acad Sci. 1968 Jun 14;151(1):64–77. [PubMed]
  • Sage RD, Whitney JB, 3rd, Wilson AC. Genetic analysis of a hybrid zone between domesticus and musculus mice (Mus musculus complex): hemoglobin polymorphisms. Curr Top Microbiol Immunol. 1986;127:75–85. [PubMed]
  • Figueroa F, Günther E, Klein J. MHC polymorphism pre-dating speciation. Nature. 1988 Sep 15;335(6187):265–267. [PubMed]
  • Lawlor DA, Ward FE, Ennis PD, Jackson AP, Parham P. HLA-A and B polymorphisms predate the divergence of humans and chimpanzees. Nature. 1988 Sep 15;335(6187):268–271. [PubMed]
  • Sagai T, Sakaizumi M, Miyashita N, Bonhomme F, Petras ML, Nielsen JT, Shiroishi T, Moriwaki K. New evidence for trans-species evolution of the H-2 class I polymorphism. Immunogenetics. 1989;30(2):89–98. [PubMed]
  • Oakeshott JG, Collet C, Phillis RW, Nielsen KM, Russell RJ, Chambers GK, Ross V, Richmond RC. Molecular cloning and characterization of esterase-6, a serine hydrolase of Drosophila. Proc Natl Acad Sci U S A. 1987 May;84(10):3359–3363. [PMC free article] [PubMed]
  • Vernick KD, Collins FH. Association of a Plasmodium-refractory phenotype with an esterase locus in Anopheles gambiae. Am J Trop Med Hyg. 1989 Jun;40(6):593–597. [PubMed]
  • Rusting R. Skin deep. A recombinant growth factor hastens wound healing. Sci Am. 1989 Sep;261(3):38–38. [PubMed]
  • Nöthel H. Adaptation of Drosophila melanogaster populations to high mutation pressure: evolutionary adjustment of mutation rates. Proc Natl Acad Sci U S A. 1987 Feb;84(4):1045–1049. [PMC free article] [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...