Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. 1990 Apr; 87(8): 3220–3224.

Molecular basis for surface antigen size polymorphisms and conservation of a neutralization-sensitive epitope in Anaplasma marginale.


Anaplasmosis is one of several tick-borne diseases severely constraining cattle production and usage in many parts of the world. Cattle can be protected from anaplasmosis by immunization with major surface protein 1, a surface protein of Anaplasma marginale carrying a neutralization-sensitive epitope. Marked size polymorphisms exist among different isolates of A. marginale in the AmF105 subunit of major surface protein 1, yet all isolates still contain the neutralization-sensitive epitope. To clarify the basis for these observations, the mspl alpha gene encoding AmF105 was cloned from four isolates and sequenced. The encoded polypeptides share a high degree of overall homology between isolates but contain a domain with various numbers of tandemly repeated sequences and three regions of clustered amino acid substitutions outside the repeat domain. The polypeptide size differences are completely explained by the variations in the numbers of tandem repeat units. We have mapped the neutralization-sensitive epitope to a sequence that is present within each repeat unit. These results identify a basis for size polymorphisms of the surface polypeptide antigen concomitant with B-cell epitope conservation in rickettsiae.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Francis DH, Kinden DA, Buening GM. Characterization of the inclusion limiting membrane of anaplasma marginale by immunoferritin labeling. Am J Vet Res. 1979 Jun;40(6):777–782. [PubMed]
  • Palmer GH, Barbet AF, Davis WC, McGuire TC. Immunization with an isolate-common surface protein protects cattle against anaplasmosis. Science. 1986 Mar 14;231(4743):1299–1302. [PubMed]
  • Oberle SM, Palmer GH, Barbet AF, McGuire TC. Molecular size variations in an immunoprotective protein complex among isolates of Anaplasma marginale. Infect Immun. 1988 Jun;56(6):1567–1573. [PMC free article] [PubMed]
  • McGuire TC, Palmer GH, Goff WL, Johnson MI, Davis WC. Common and isolate-restricted antigens of Anaplasma marginale detected with monoclonal antibodies. Infect Immun. 1984 Sep;45(3):697–700. [PMC free article] [PubMed]
  • Barbet AF, Palmer GH, Myler PJ, McGuire TC. Characterization of an immunoprotective protein complex of Anaplasma marginale by cloning and expression of the gene coding for polypeptide Am105L. Infect Immun. 1987 Oct;55(10):2428–2435. [PMC free article] [PubMed]
  • Palmer GH, McGuire TC. Immune serum against Anaplasma marginale initial bodies neutralizes infectivity for cattle. J Immunol. 1984 Aug;133(2):1010–1015. [PubMed]
  • Palmer GH, Barbet AF, Musoke AJ, Katende JM, Rurangirwa F, Shkap V, Pipano E, Davis WC, McGuire TC. Recognition of conserved surface protein epitopes on Anaplasma centrale and Anaplasma marginale isolates from Israel, Kenya and the United States. Int J Parasitol. 1988 Feb;18(1):33–38. [PubMed]
  • Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. [PubMed]
  • Young RA, Davis RW. Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1194–1198. [PMC free article] [PubMed]
  • Feinberg AP, Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed]
  • Chen EY, Seeburg PH. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA. 1985 Apr;4(2):165–170. [PubMed]
  • Van der Ploeg LH, Liu AY, Michels PA, De Lange T, Borst P, Majumder HK, Weber H, Veeneman GH, Van Boom J. RNA splicing is required to make the messenger RNA for a variant surface antigen in trypanosomes. Nucleic Acids Res. 1982 Jun 25;10(12):3591–3604. [PMC free article] [PubMed]
  • Hollingshead SK, Fischetti VA, Scott JR. Size variation in group A streptococcal M protein is generated by homologous recombination between intragenic repeats. Mol Gen Genet. 1987 May;207(2-3):196–203. [PubMed]
  • Inoue T, Cech TR. Secondary structure of the circular form of the Tetrahymena rRNA intervening sequence: a technique for RNA structure analysis using chemical probes and reverse transcriptase. Proc Natl Acad Sci U S A. 1985 Feb;82(3):648–652. [PMC free article] [PubMed]
  • Lipman DJ, Pearson WR. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22;227(4693):1435–1441. [PubMed]
  • Brendel V, Trifonov EN. A computer algorithm for testing potential prokaryotic terminators. Nucleic Acids Res. 1984 May 25;12(10):4411–4427. [PMC free article] [PubMed]
  • Garnier J, Osguthorpe DJ, Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. [PubMed]
  • Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. [PubMed]
  • Barbet AF, Myler PJ, Williams RO, McGuire TC. Shared surface epitopes among trypanosomes of the same serodeme expressing different variable surface glycoprotein genes. Mol Biochem Parasitol. 1989 Jan 15;32(2-3):191–199. [PubMed]
  • Palmer GH, Kocan KM, Barron SJ, Hair JA, Barbet AF, Davis WC, McGuire TC. Presence of common antigens, including major surface protein epitopes, between the cattle (intraerythrocytic) and tick stages of Anaplasma marginale. Infect Immun. 1985 Dec;50(3):881–886. [PMC free article] [PubMed]
  • Palmer GH, Barbet AF, Cantor GH, McGuire TC. Immunization of cattle with the MSP-1 surface protein complex induces protection against a structurally variant Anaplasma marginale isolate. Infect Immun. 1989 Nov;57(11):3666–3669. [PMC free article] [PubMed]
  • Hawley DK, McClure WR. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res. 1983 Apr 25;11(8):2237–2255. [PMC free article] [PubMed]
  • Anders RF, Shi PT, Scanlon DB, Leach SJ, Coppel RL, Brown GV, Stahl HD, Kemp DJ. Antigenic repeat structures in proteins of Plasmodium falciparum. Ciba Found Symp. 1986;119:164–183. [PubMed]
  • Kemp DJ, Coppel RL, Anders RF. Repetitive proteins and genes of malaria. Annu Rev Microbiol. 1987;41:181–208. [PubMed]
  • Hopp TP, Woods KR. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3824–3828. [PMC free article] [PubMed]
  • Wickner WT, Lodish HF. Multiple mechanisms of protein insertion into and across membranes. Science. 1985 Oct 25;230(4724):400–407. [PubMed]
  • Hanson B. Identification and partial characterization of Rickettsia tsutsugamushi major protein immunogens. Infect Immun. 1985 Dec;50(3):603–609. [PMC free article] [PubMed]
  • Oaks EV, Stover CK, Rice RM. Molecular cloning and expression of Rickettsia tsutsugamushi genes for two major protein antigens in Escherichia coli. Infect Immun. 1987 May;55(5):1156–1162. [PMC free article] [PubMed]
  • Shine J, Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. [PMC free article] [PubMed]
  • Anderson BE, Baumstark BR, Bellini WJ. Expression of the gene encoding the 17-kilodalton antigen from Rickettsia rickettsii: transcription and posttranslational modification. J Bacteriol. 1988 Oct;170(10):4493–4500. [PMC free article] [PubMed]
  • Smith GP. Evolution of repeated DNA sequences by unequal crossover. Science. 1976 Feb 13;191(4227):528–535. [PubMed]
  • Levinson G, Gutman GA. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol. 1987 May;4(3):203–221. [PubMed]
  • Murphy GL, Connell TD, Barritt DS, Koomey M, Cannon JG. Phase variation of gonococcal protein II: regulation of gene expression by slipped-strand mispairing of a repetitive DNA sequence. Cell. 1989 Feb 24;56(4):539–547. [PubMed]
  • Huang CC, Hammond C, Bishop JM. Nucleotide sequence of v-fps in the PRCII strain of avian sarcoma virus. J Virol. 1984 Apr;50(1):125–131. [PMC free article] [PubMed]
  • Carlberg K, Chamberlin ME, Beemon K. The avian sarcoma virus PRCII lacks 1020 nucleotides of the fps transforming gene. Virology. 1984 May;135(1):157–167. [PubMed]
  • Döring HP, Tillmann E, Starlinger P. DNA sequence of the maize transposable element Dissociation. Nature. 1984 Jan 12;307(5947):127–130. [PubMed]
  • Ibañez CF, Affranchino JL, Macina RA, Reyes MB, Leguizamon S, Camargo ME, Aslund L, Pettersson U, Frasch AC. Multiple Trypanosoma cruzi antigens containing tandemly repeated amino acid sequence motifs. Mol Biochem Parasitol. 1988 Jul;30(1):27–33. [PubMed]
  • Roditi I, Carrington M, Turner M. Expression of a polypeptide containing a dipeptide repeat is confined to the insect stage of Trypanosoma brucei. Nature. 1987 Jan 15;325(6101):272–274. [PubMed]
  • Mowatt MR, Clayton CE. Polymorphism in the procyclic acidic repetitive protein gene family of Trypanosoma brucei. Mol Cell Biol. 1988 Oct;8(10):4055–4062. [PMC free article] [PubMed]
  • Richardson JP, Beecroft RP, Tolson DL, Liu MK, Pearson TW. Procyclin: an unusual immunodominant glycoprotein surface antigen from the procyclic stage of African trypanosomes. Mol Biochem Parasitol. 1988 Dec;31(3):203–216. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • MedGen
    Related information in MedGen
  • Nucleotide
    Published Nucleotide sequences
  • Protein
    Published protein sequences
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...