• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Dec 1, 1991; 88(23): 10783–10787.

The plastid genome of Cryptomonas phi encodes an hsp70-like protein, a histone-like protein, and an acyl carrier protein.


The plastid genome of Cryptomonas phi, a cryptomonad alga, contains three genes that have not previously been found in any organellar genome. Each of these genes encodes a functional class of organellar gene product not previously reported. The first gene, dnaK, encodes a polypeptide of the hsp70 heat shock protein family. The predicted amino acid sequence of the DnaK protein is 54% identical to that of the Escherichia coli hsp70 protein (DnaK), 50-53% identical to that of two nucleus-encoded mitochondrial hsp70 proteins, and 43-46% identical to that of several eukaryotic cytoplasmic members of the hsp70 protein family. The second gene, hlpA, encodes a polypeptide resembling bacterial histone-like proteins. The predicted amino acid sequence of the HlpA protein is 25-53% identical to that of several bacterial histone-like proteins, and the identity increases to 39-76% over a conserved region corresponding to the long arm that binds DNA. The third gene, acpA, encodes an acyl carrier protein, which is a key cofactor in the synthesis and metabolism of fatty acids. Its predicted amino acid sequence is 36-59% identical to that of eubacterial and plant chloroplast (nucleus-encoded) acyl carrier proteins.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Gray MW, Doolittle WF. Has the endosymbiont hypothesis been proven? Microbiol Rev. 1982 Mar;46(1):1–42. [PMC free article] [PubMed]
  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, et al. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 1986 Sep;5(9):2043–2049. [PMC free article] [PubMed]
  • Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY, et al. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet. 1989 Jun;217(2-3):185–194. [PubMed]
  • Shimada H, Sugiura M. Fine structural features of the chloroplast genome: comparison of the sequenced chloroplast genomes. Nucleic Acids Res. 1991 Mar 11;19(5):983–995. [PMC free article] [PubMed]
  • Douglas SE, Durnford DG. The small subunit of ribulose-1,5-bisphosphate carboxylase is plastid-encoded in the chlorophyll c-containing alga Cryptomonas phi. Plant Mol Biol. 1989 Jul;13(1):13–20. [PubMed]
  • Martin W, Lagrange T, Li YF, Bisanz-Seyer C, Mache R. Hypothesis for the evolutionary origin of the chloroplast ribosomal protein L21 of spinach. Curr Genet. 1990 Dec;18(6):553–556. [PubMed]
  • Smooker PM, Kruft V, Subramanian AR. A ribosomal protein is encoded in the chloroplast DNA in a lower plant but in the nucleus in angiosperms. Isolation of the spinach L21 protein and cDNA clone with transit and an unusual repeat sequence. J Biol Chem. 1990 Sep 25;265(27):16699–16703. [PubMed]
  • Baldauf SL, Manhart JR, Palmer JD. Different fates of the chloroplast tufA gene following its transfer to the nucleus in green algae. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5317–5321. [PMC free article] [PubMed]
  • Douglas SE, Murphy CA, Spencer DF, Gray MW. Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes. Nature. 1991 Mar 14;350(6314):148–151. [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed]
  • Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988 Nov 25;16(22):10881–10890. [PMC free article] [PubMed]
  • Bardwell JC, Craig EA. Major heat shock gene of Drosophila and the Escherichia coli heat-inducible dnaK gene are homologous. Proc Natl Acad Sci U S A. 1984 Feb;81(3):848–852. [PMC free article] [PubMed]
  • Craig EA, Kramer J, Shilling J, Werner-Washburne M, Holmes S, Kosic-Smithers J, Nicolet CM. SSC1, an essential member of the yeast HSP70 multigene family, encodes a mitochondrial protein. Mol Cell Biol. 1989 Jul;9(7):3000–3008. [PMC free article] [PubMed]
  • Engman DM, Kirchhoff LV, Donelson JE. Molecular cloning of mtp70, a mitochondrial member of the hsp70 family. Mol Cell Biol. 1989 Nov;9(11):5163–5168. [PMC free article] [PubMed]
  • Glass DJ, Polvere RI, Van der Ploeg LH. Conserved sequences and transcription of the hsp70 gene family in Trypanosoma brucei. Mol Cell Biol. 1986 Dec;6(12):4657–4666. [PMC free article] [PubMed]
  • Slater MR, Craig EA. The SSA1 and SSA2 genes of the yeast Saccharomyces cerevisiae. Nucleic Acids Res. 1989 Jan 25;17(2):805–806. [PMC free article] [PubMed]
  • Rochester DE, Winer JA, Shah DM. The structure and expression of maize genes encoding the major heat shock protein, hsp70. EMBO J. 1986 Mar;5(3):451–458. [PMC free article] [PubMed]
  • Hunt C, Morimoto RI. Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6455–6459. [PMC free article] [PubMed]
  • Tanaka I, Appelt K, Dijk J, White SW, Wilson KS. 3-A resolution structure of a protein with histone-like properties in prokaryotes. Nature. 1984 Aug 2;310(5976):376–381. [PubMed]
  • Drlica K, Rouviere-Yaniv J. Histonelike proteins of bacteria. Microbiol Rev. 1987 Sep;51(3):301–319. [PMC free article] [PubMed]
  • Laine B, Kmiecik D, Sautiere P, Biserte G, Cohen-Solal M. Complete amino-acid sequences of DNA-binding proteins HU-1 and HU-2 from Escherichia coli. Eur J Biochem. 1980 Feb;103(3):447–461. [PubMed]
  • Mende L, Timm B, Subramanian R. Primary structures of two homologous ribosome-associated DNA-binding proteins of Escherichia coli. FEBS Lett. 1978 Dec 15;96(2):395–398. [PubMed]
  • Flamm EL, Weisberg RA. Primary structure of the hip gene of Escherichia coli and of its product, the beta subunit of integration host factor. J Mol Biol. 1985 May 25;183(2):117–128. [PubMed]
  • Miller HI. Primary structure of the himA gene of Escherichia coli: homology with DNA-binding protein HU and association with the phenylalanyl-tRNA synthetase operon. Cold Spring Harb Symp Quant Biol. 1984;49:691–698. [PubMed]
  • Mechulam Y, Fayat G, Blanquet S. Sequence of the Escherichia coli pheST operon and identification of the himA gene. J Bacteriol. 1985 Aug;163(2):787–791. [PMC free article] [PubMed]
  • Greene JR, Brennan SM, Andrew DJ, Thompson CC, Richards SH, Heinrikson RL, Geiduschek EP. Sequence of the bacteriophage SP01 gene coding for transcription factor 1, a viral homologue of the bacterial type II DNA-binding proteins. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7031–7035. [PMC free article] [PubMed]
  • Laine B, Bélaïche D, Khanaka H, Sautière P. Primary structure of the DNA-binding protein HRm from Rhizobium meliloti. Eur J Biochem. 1983 Mar 15;131(2):325–331. [PubMed]
  • DeLange RJ, Williams LC, Searcy DG. A histone-like protein (HTa) from Thermoplasma acidophilum. II. Complete amino acid sequence. J Biol Chem. 1981 Jan 25;256(2):905–911. [PubMed]
  • Vanaman TC, Wakil SJ, Hill RL. The complete amino acid sequence of the acyl carrier protein of Escherichia coli. J Biol Chem. 1968 Dec 25;243(24):6420–6431. [PubMed]
  • Froehlich JE, Poorman R, Reardon E, Barnum SR, Jaworski JG. Purification and characterization of acyl carrier protein from two cyanobacteria species. Eur J Biochem. 1990 Nov 13;193(3):817–825. [PubMed]
  • Kuo TM, Ohlrogge JB. The primary structure of spinach acyl carrier protein. Arch Biochem Biophys. 1984 Oct;234(1):290–296. [PubMed]
  • Schmid KM, Ohlrogge JB. A root acyl carrier protein-II from spinach is also expressed in leaves and seeds. Plant Mol Biol. 1990 Nov;15(5):765–778. [PubMed]
  • Post-Beittenmiller MA, Hlousek-Radojcić A, Ohlrogge JB. DNA sequence of a genomic clone encoding an Arabidopsis acyl carrier protein (ACP). Nucleic Acids Res. 1989 Feb 25;17(4):1777–1777. [PMC free article] [PubMed]
  • Rose RE, DeJesus CE, Moylan SL, Ridge NP, Scherer DE, Knauf VC. The nucleotide sequence of a cDNA clone encoding acyl carrier protein (ACP) from Brassica campestris seeds. Nucleic Acids Res. 1987 Sep 11;15(17):7197–7197. [PMC free article] [PubMed]
  • Jaworski JG, Post-Beittenmiller MA, Ohlrogge JB. Site-directed mutagenesis of the spinach acyl carrier protein-I prosthetic group attachment site. Eur J Biochem. 1989 Oct 1;184(3):603–609. [PubMed]
  • Craig EA, Gross CA. Is hsp70 the cellular thermometer? Trends Biochem Sci. 1991 Apr;16(4):135–140. [PubMed]
  • Marshall JS, DeRocher AE, Keegstra K, Vierling E. Identification of heat shock protein hsp70 homologues in chloroplasts. Proc Natl Acad Sci U S A. 1990 Jan;87(1):374–378. [PMC free article] [PubMed]
  • Amir-Shapira D, Leustek T, Dalie B, Weissbach H, Brot N. Hsp70 proteins, similar to Escherichia coli DnaK, in chloroplasts and mitochondria of Euglena gracilis. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1749–1752. [PMC free article] [PubMed]
  • Phillips GJ, Silhavy TJ. Heat-shock proteins DnaK and GroEL facilitate export of LacZ hybrid proteins in E. coli. Nature. 1990 Apr 26;344(6269):882–884. [PubMed]
  • Altman E, Kumamoto CA, Emr SD. Heat-shock proteins can substitute for SecB function during protein export in Escherichia coli. EMBO J. 1991 Feb;10(2):239–245. [PMC free article] [PubMed]
  • Kang PJ, Ostermann J, Shilling J, Neupert W, Craig EA, Pfanner N. Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature. 1990 Nov 8;348(6297):137–143. [PubMed]
  • Smith BJ, Yaffe MP. A mutation in the yeast heat-shock factor gene causes temperature-sensitive defects in both mitochondrial protein import and the cell cycle. Mol Cell Biol. 1991 May;11(5):2647–2655. [PMC free article] [PubMed]
  • Ostermann J, Voos W, Kang PJ, Craig EA, Neupert W, Pfanner N. Precursor proteins in transit through mitochondrial contact sites interact with hsp70 in the matrix. FEBS Lett. 1990 Dec 17;277(1-2):281–284. [PubMed]
  • Scherer PE, Krieg UC, Hwang ST, Vestweber D, Schatz G. A precursor protein partly translocated into yeast mitochondria is bound to a 70 kd mitochondrial stress protein. EMBO J. 1990 Dec;9(13):4315–4322. [PMC free article] [PubMed]
  • Sheffield WP, Shore GC, Randall SK. Mitochondrial precursor protein. Effects of 70-kilodalton heat shock protein on polypeptide folding, aggregation, and import competence. J Biol Chem. 1990 Jul 5;265(19):11069–11076. [PubMed]
  • Kawasaki Y, Wada C, Yura T. Roles of Escherichia coli heat shock proteins DnaK, DnaJ and GrpE in mini-F plasmid replication. Mol Gen Genet. 1990 Jan;220(2):277–282. [PubMed]
  • Wickner SH. Three Escherichia coli heat shock proteins are required for P1 plasmid DNA replication: formation of an active complex between E. coli DnaJ protein and the P1 initiator protein. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2690–2694. [PMC free article] [PubMed]
  • Wickner S, Hoskins J, McKenney K. Function of DnaJ and DnaK as chaperones in origin-specific DNA binding by RepA. Nature. 1991 Mar 14;350(6314):165–167. [PubMed]
  • Yamada EW, Dotzlaw H, Huzel NJ. Isolation of histone-like proteins from mitochondria of bovine heart. Prep Biochem. 1991;21(1):11–23. [PubMed]
  • Bonnefoy E, Rouvière-Yaniv J. HU and IHF, two homologous histone-like proteins of Escherichia coli, form different protein-DNA complexes with short DNA fragments. EMBO J. 1991 Mar;10(3):687–696. [PMC free article] [PubMed]
  • Hodges-Garcia Y, Hagerman PJ, Pettijohn DE. DNA ring closure mediated by protein HU. J Biol Chem. 1989 Sep 5;264(25):14621–14623. [PubMed]
  • Broyles SS, Pettijohn DE. Interaction of the Escherichia coli HU protein with DNA. Evidence for formation of nucleosome-like structures with altered DNA helical pitch. J Mol Biol. 1986 Jan 5;187(1):47–60. [PubMed]
  • Flashner Y, Gralla JD. DNA dynamic flexibility and protein recognition: differential stimulation by bacterial histone-like protein HU. Cell. 1988 Aug 26;54(5):713–721. [PubMed]
  • Pettijohn DE. Histone-like proteins and bacterial chromosome structure. J Biol Chem. 1988 Sep 15;263(26):12793–12796. [PubMed]
  • Schmid MB. More than just "histone-like" proteins. Cell. 1990 Nov 2;63(3):451–453. [PubMed]
  • Huisman O, Faelen M, Girard D, Jaffé A, Toussaint A, Rouvière-Yaniv J. Multiple defects in Escherichia coli mutants lacking HU protein. J Bacteriol. 1989 Jul;171(7):3704–3712. [PMC free article] [PubMed]
  • Stirdivant SM, Crossland LD, Bogorad L. DNA supercoiling affects in vitro transcription of two maize chloroplast genes differently. Proc Natl Acad Sci U S A. 1985 Aug;82(15):4886–4890. [PMC free article] [PubMed]
  • Hwang SR, Tabita FR. Acyl carrier protein-derived sequence encoded by the chloroplast genome in the marine diatom Cylindrotheca sp. strain N1. J Biol Chem. 1991 Jul 25;266(21):13492–13494. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...