• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Nov 1, 1991; 88(21): 9523–9527.
PMCID: PMC52750

A genomic scanning method for higher organisms using restriction sites as landmarks.

Abstract

We have developed a powerful genomic scanning method, termed "restriction landmark genomic scanning," that is useful for analysis of the genomic DNA of higher organisms using restriction sites as landmarks. Genomic DNA is radioactively labeled at cleavage sites specific for a rare cleaving restriction enzyme and then size-fractionated in one dimension. The fractionated DNA is further digested with another more frequently occurring enzyme and separated in the second dimension. This procedure gives a two-dimensional pattern with thousands of scattered spots corresponding to sites for the first enzyme, indicating that the genome of mammals can be scanned at approximately 1-megabase intervals. The position and intensity of a spot reflect its locus and the copy number of the corresponding restriction site, respectively, based on the nature of the end-labeling system. Therefore, this method is widely applicable to genome mapping or detection of alterations in a genome.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.4M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. [PubMed]
  • Brilliant MH, Gondo Y, Eicher EM. Direct molecular identification of the mouse pink-eyed unstable mutation by genome scanning. Science. 1991 Apr 26;252(5005):566–569. [PubMed]
  • Uitterlinden AG, Slagboom PE, Knook DL, Vijg J. Two-dimensional DNA fingerprinting of human individuals. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2742–2746. [PMC free article] [PubMed]
  • Blin N, Stafford DW. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 1976 Sep;3(9):2303–2308. [PMC free article] [PubMed]
  • Garrels JI. The QUEST system for quantitative analysis of two-dimensional gels. J Biol Chem. 1989 Mar 25;264(9):5269–5282. [PubMed]
  • Vanyushin BF, Tkacheva SG, Belozersky AN. Rare bases in animal DNA. Nature. 1970 Mar 7;225(5236):948–949. [PubMed]
  • Bingham PM, Levis R, Rubin GM. Cloning of DNA sequences from the white locus of D. melanogaster by a novel and general method. Cell. 1981 Sep;25(3):693–704. [PubMed]
  • Russell LB, Hunsicker PR, Cacheiro NL, Bangham JW, Russell WL, Shelby MD. Chlorambucil effectively induces deletion mutations in mouse germ cells. Proc Natl Acad Sci U S A. 1989 May;86(10):3704–3708. [PMC free article] [PubMed]
  • Avner P, Amar L, Dandolo L, Guénet JL. Genetic analysis of the mouse using interspecific crosses. Trends Genet. 1988 Jan;4(1):18–23. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Gene
    Gene
    Gene links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • HomoloGene
    HomoloGene
    HomoloGene links
  • MedGen
    MedGen
    Related information in MedGen
  • OMIM
    OMIM
    OMIM record citing PubMed
  • PubMed
    PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...