Logo of jcinvestThe Journal of Clinical InvestigationCurrent IssueArchiveSubscriptionAbout the Journal
J Clin Invest. 1997 Sep 15; 100(6): 1611–1622.
PMCID: PMC508343

The syndecan family of proteoglycans. Novel receptors mediating internalization of atherogenic lipoproteins in vitro.


Cell-surface heparan sulfate proteoglycans have been shown to participate in lipoprotein catabolism, but the roles of specific proteoglycan classes have not been examined previously. Here, we studied the involvement of the syndecan proteoglycan family. First, transfection of CHO cells with expression vectors for several syndecan core proteins produced parallel increases in the cell association and degradation of lipoproteins enriched in lipoprotein lipase, a heparan-binding protein. Second, a chimeric construct, FcR-Synd1, that consists of the ectodomain of the IgG Fc receptor Ia linked to the highly conserved transmembrane and cytoplasmic domains of syndecan-1 directly mediated efficient internalization, in a process triggered by ligand clustering. Third, internalization of lipase-enriched lipoproteins via syndecan-1 and of clustered IgGs via the chimera showed identical kinetics (t1/2 = 1 h) and identical dose-response sensitivities to cytochalasin B, which disrupts microfilaments, and to genistein, which inhibits tyrosine kinases. In contrast, internalization of the receptor-associated protein, which proceeds via coated pits, showed a t1/2 < 15 min, limited sensitivity to cytochalasin B, and complete insensitivity to genistein. Thus, syndecan proteoglycans can directly mediate ligand catabolism through a pathway with characteristics distinct from coated pits, and might act as receptors for atherogenic lipoproteins and other ligands in vivo.

Full Text

The Full Text of this article is available as a PDF (258K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Kita T, Goldstein JL, Brown MS, Watanabe Y, Hornick CA, Havel RJ. Hepatic uptake of chylomicron remnants in WHHL rabbits: a mechanism genetically distinct from the low density lipoprotein receptor. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3623–3627. [PMC free article] [PubMed]
  • Rubinsztein DC, Cohen JC, Berger GM, van der Westhuyzen DR, Coetzee GA, Gevers W. Chylomicron remnant clearance from the plasma is normal in familial hypercholesterolemic homozygotes with defined receptor defects. J Clin Invest. 1990 Oct;86(4):1306–1312. [PMC free article] [PubMed]
  • Ishibashi S, Herz J, Maeda N, Goldstein JL, Brown MS. The two-receptor model of lipoprotein clearance: tests of the hypothesis in "knockout" mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4431–4435. [PMC free article] [PubMed]
  • Beisiegel U, Krapp A, Weber W, Olivecrona G. The role of alpha 2M receptor/LRP in chylomicron remnant metabolism. Ann N Y Acad Sci. 1994 Sep 10;737:53–69. [PubMed]
  • Williams KJ, Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol. 1995 May;15(5):551–561. [PMC free article] [PubMed]
  • Goldstein JL, Brown MS. Atherosclerosis: the low-density lipoprotein receptor hypothesis. Metabolism. 1977 Nov;26(11):1257–1275. [PubMed]
  • Kesaniemi YA, Witztum JL, Steinbrecher UP. Receptor-mediated catabolism of low density lipoprotein in man. Quantitation using glucosylated low density lipoprotein. J Clin Invest. 1983 Apr;71(4):950–959. [PMC free article] [PubMed]
  • Williams KJ, Fless GM, Petrie KA, Snyder ML, Brocia RW, Swenson TL. Mechanisms by which lipoprotein lipase alters cellular metabolism of lipoprotein(a), low density lipoprotein, and nascent lipoproteins. Roles for low density lipoprotein receptors and heparan sulfate proteoglycans. J Biol Chem. 1992 Jul 5;267(19):13284–13292. [PubMed]
  • Ji ZS, Brecht WJ, Miranda RD, Hussain MM, Innerarity TL, Mahley RW. Role of heparan sulfate proteoglycans in the binding and uptake of apolipoprotein E-enriched remnant lipoproteins by cultured cells. J Biol Chem. 1993 May 15;268(14):10160–10167. [PubMed]
  • Tabas I, Li Y, Brocia RW, Xu SW, Swenson TL, Williams KJ. Lipoprotein lipase and sphingomyelinase synergistically enhance the association of atherogenic lipoproteins with smooth muscle cells and extracellular matrix. A possible mechanism for low density lipoprotein and lipoprotein(a) retention and macrophage foam cell formation. J Biol Chem. 1993 Sep 25;268(27):20419–20432. [PubMed]
  • Mahley RW, Innerarity TL. Interaction of canine and swine lipoproteins with the low density lipoprotein receptor of fibroblasts as correlated with heparin/manganese precipitability. J Biol Chem. 1977 Jun 10;252(11):3980–3986. [PubMed]
  • Oswald B, Shelburne F, Landis B, Linker A, Quarfordt S. The relevance of glycosaminoglycan sulfates to Apo E induced lipid uptake by hepatocyte monolayers. Biochem Biophys Res Commun. 1986 Nov 26;141(1):158–164. [PubMed]
  • LaRosa JC, Levy RI, Windmueller HG, Fredrickson DS. Comparison of the triglyceride lipase of liver, adipose tissue, and postheparin plasma. J Lipid Res. 1972 May;13(3):356–363. [PubMed]
  • Davis RC, Wong H, Nikazy J, Wang K, Han Q, Schotz MC. Chimeras of hepatic lipase and lipoprotein lipase. Domain localization of enzyme-specific properties. J Biol Chem. 1992 Oct 25;267(30):21499–21504. [PubMed]
  • Felts JM, Itakura H, Crane RT. The mechanism of assimilation of constituents of chylomicrons, very low density lipoproteins and remnants - a new theory. Biochem Biophys Res Commun. 1975 Oct 27;66(4):1467–1475. [PubMed]
  • Oswald B, Quarfordt S. Effect of apoE on triglyceride emulsion interaction with hepatocyte and hepatoma G2 cells. J Lipid Res. 1987 Jul;28(7):798–809. [PubMed]
  • Vilaró S, Ramírez I, Bengtsson-Olivecrona G, Olivecrona T, Llobera M. Lipoprotein lipase in liver. Release by heparin and immunocytochemical localization. Biochim Biophys Acta. 1988 Mar 25;959(2):106–117. [PubMed]
  • Corey JE, Zilversmit DB. Effect of cholesterol feeding on arterial lipolytic activity in the rabbit. Atherosclerosis. 1977 Jun;27(2):201–212. [PubMed]
  • Ylä-Herttuala S, Lipton BA, Rosenfeld ME, Goldberg IJ, Steinberg D, Witztum JL. Macrophages and smooth muscle cells express lipoprotein lipase in human and rabbit atherosclerotic lesions. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10143–10147. [PMC free article] [PubMed]
  • Rumsey SC, Obunike JC, Arad Y, Deckelbaum RJ, Goldberg IJ. Lipoprotein lipase-mediated uptake and degradation of low density lipoproteins by fibroblasts and macrophages. J Clin Invest. 1992 Oct;90(4):1504–1512. [PMC free article] [PubMed]
  • Eisenberg S, Sehayek E, Olivecrona T, Vlodavsky I. Lipoprotein lipase enhances binding of lipoproteins to heparan sulfate on cell surfaces and extracellular matrix. J Clin Invest. 1992 Nov;90(5):2013–2021. [PMC free article] [PubMed]
  • Mulder M, Lombardi P, Jansen H, van Berkel TJ, Frants RR, Havekes LM. Heparan sulphate proteoglycans are involved in the lipoprotein lipase-mediated enhancement of the cellular binding of very low density and low density lipoproteins. Biochem Biophys Res Commun. 1992 Jun 15;185(2):582–587. [PubMed]
  • Ji ZS, Fazio S, Mahley RW. Variable heparan sulfate proteoglycan binding of apolipoprotein E variants may modulate the expression of type III hyperlipoproteinemia. J Biol Chem. 1994 May 6;269(18):13421–13428. [PubMed]
  • Mann WA, Meyer N, Weber W, Meyer S, Greten H, Beisiegel U. Apolipoprotein E isoforms and rare mutations: parallel reduction in binding to cells and to heparin reflects severity of associated type III hyperlipoproteinemia. J Lipid Res. 1995 Mar;36(3):517–525. [PubMed]
  • Ji ZS, Lauer SJ, Fazio S, Bensadoun A, Taylor JM, Mahley RW. Enhanced binding and uptake of remnant lipoproteins by hepatic lipase-secreting hepatoma cells in culture. J Biol Chem. 1994 May 6;269(18):13429–13436. [PubMed]
  • Shafi S, Brady SE, Bensadoun A, Havel RJ. Role of hepatic lipase in the uptake and processing of chylomicron remnants in rat liver. J Lipid Res. 1994 Apr;35(4):709–720. [PubMed]
  • de Faria E, Fong LG, Komaromy M, Cooper AD. Relative roles of the LDL receptor, the LDL receptor-like protein, and hepatic lipase in chylomicron remnant removal by the liver. J Lipid Res. 1996 Jan;37(1):197–209. [PubMed]
  • Mahley RW, Ji ZS, Brecht WJ, Miranda RD, He D. Role of heparan sulfate proteoglycans and the LDL receptor-related protein in remnant lipoprotein metabolism. Ann N Y Acad Sci. 1994 Sep 10;737:39–52. [PubMed]
  • Beisiegel U. Receptors for triglyceride-rich lipoproteins and their role in lipoprotein metabolism. Curr Opin Lipidol. 1995 Jun;6(3):117–122. [PubMed]
  • Willnow TE, Goldstein JL, Orth K, Brown MS, Herz J. Low density lipoprotein receptor-related protein and gp330 bind similar ligands, including plasminogen activator-inhibitor complexes and lactoferrin, an inhibitor of chylomicron remnant clearance. J Biol Chem. 1992 Dec 25;267(36):26172–26180. [PubMed]
  • Beisiegel U, Weber W, Ihrke G, Herz J, Stanley KK. The LDL-receptor-related protein, LRP, is an apolipoprotein E-binding protein. Nature. 1989 Sep 14;341(6238):162–164. [PubMed]
  • Nykjaer A, Bengtsson-Olivecrona G, Lookene A, Moestrup SK, Petersen CM, Weber W, Beisiegel U, Gliemann J. The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein binds lipoprotein lipase and beta-migrating very low density lipoprotein associated with the lipase. J Biol Chem. 1993 Jul 15;268(20):15048–15055. [PubMed]
  • Chappell DA, Fry GL, Waknitz MA, Muhonen LE, Pladet MW, Iverius PH, Strickland DK. Lipoprotein lipase induces catabolism of normal triglyceride-rich lipoproteins via the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor in vitro. A process facilitated by cell-surface proteoglycans. J Biol Chem. 1993 Jul 5;268(19):14168–14175. [PubMed]
  • Mokuno H, Brady S, Kotite L, Herz J, Havel RJ. Effect of the 39-kDa receptor-associated protein on the hepatic uptake and endocytosis of chylomicron remnants and low density lipoproteins in the rat. J Biol Chem. 1994 May 6;269(18):13238–13243. [PubMed]
  • Willnow TE, Sheng Z, Ishibashi S, Herz J. Inhibition of hepatic chylomicron remnant uptake by gene transfer of a receptor antagonist. Science. 1994 Jun 3;264(5164):1471–1474. [PubMed]
  • Hussain MM, Maxfield FR, Más-Oliva J, Tabas I, Ji ZS, Innerarity TL, Mahley RW. Clearance of chylomicron remnants by the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. J Biol Chem. 1991 Jul 25;266(21):13936–13940. [PubMed]
  • Choi SY, Cooper AD. A comparison of the roles of the low density lipoprotein (LDL) receptor and the LDL receptor-related protein/alpha 2-macroglobulin receptor in chylomicron remnant removal in the mouse in vivo. J Biol Chem. 1993 Jul 25;268(21):15804–15811. [PubMed]
  • Descamps O, Bilheimer D, Herz J. Insulin stimulates receptor-mediated uptake of apoE-enriched lipoproteins and activated alpha 2-macroglobulin in adipocytes. J Biol Chem. 1993 Jan 15;268(2):974–981. [PubMed]
  • Chappell DA, Inoue I, Fry GL, Pladet MW, Bowen SL, Iverius PH, Lalouel JM, Strickland DK. Cellular catabolism of normal very low density lipoproteins via the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor is induced by the C-terminal domain of lipoprotein lipase. J Biol Chem. 1994 Jul 8;269(27):18001–18006. [PubMed]
  • Willnow TE, Armstrong SA, Hammer RE, Herz J. Functional expression of low density lipoprotein receptor-related protein is controlled by receptor-associated protein in vivo. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4537–4541. [PMC free article] [PubMed]
  • Sehayek E, Wang XX, Vlodavsky I, Avner R, Levkovitz H, Olivecrona T, Olivecrona G, Willnow TE, Herz J, Eisenberg S. Heparan sulfate-dependent and low density lipoprotein receptor-related protein-dependent catabolic pathways for lipoprotein lipase in mouse embryonic fibroblasts. Isr J Med Sci. 1996 Jun;32(6):449–454. [PubMed]
  • Strickland DK, Ashcom JD, Williams S, Battey F, Behre E, McTigue K, Battey JF, Argraves WS. Primary structure of alpha 2-macroglobulin receptor-associated protein. Human homologue of a Heymann nephritis antigen. J Biol Chem. 1991 Jul 15;266(20):13364–13369. [PubMed]
  • Ji ZS, Mahley RW. Lactoferrin binding to heparan sulfate proteoglycans and the LDL receptor-related protein. Further evidence supporting the importance of direct binding of remnant lipoproteins to HSPG. Arterioscler Thromb. 1994 Dec;14(12):2025–2031. [PubMed]
  • Vassiliou G, Stanley KK. Exogenous receptor-associated protein binds to two distinct sites on human fibroblasts but does not bind to the glycosaminoglycan residues of heparan sulfate proteoglycans. J Biol Chem. 1994 May 27;269(21):15172–15178. [PubMed]
  • Obunike JC, Edwards IJ, Rumsey SC, Curtiss LK, Wagner WD, Deckelbaum RJ, Goldberg IJ. Cellular differences in lipoprotein lipase-mediated uptake of low density lipoproteins. J Biol Chem. 1994 May 6;269(18):13129–13135. [PubMed]
  • Mortimer BC, Beveridge DJ, Martins IJ, Redgrave TG. Intracellular localization and metabolism of chylomicron remnants in the livers of low density lipoprotein receptor-deficient mice and apoE-deficient mice. Evidence for slow metabolism via an alternative apoE-dependent pathway. J Biol Chem. 1995 Dec 1;270(48):28767–28776. [PubMed]
  • Ziere GJ, Kruijt JK, Bijsterbosch MK, van Berkel TJ. Recognition of lactoferrin and aminopeptidase M-modified lactoferrin by the liver: involvement of proteoglycans and the remnant receptor. Biochem J. 1996 Jan 1;313(Pt 1):289–295. [PMC free article] [PubMed]
  • Seo T, Wang HC, Feldman SR, St Clair RW. Characterization of alpha 2-macroglobulin receptor low density lipoprotein receptor-related protein (alpha 2 MR/LRP) in White Carneau pigeon peritoneal macrophages: its role in lipoprotein metabolism. Biochim Biophys Acta. 1997 Jan 21;1344(2):171–188. [PubMed]
  • Jäckle S, Huber C, Moestrup S, Gliemann J, Beisiegel U. In vivo removal of beta-VLDL, chylomicron remnants, and alpha 2-macroglobulin in the rat. J Lipid Res. 1993 Feb;34(2):309–315. [PubMed]
  • Ji ZS, Sanan DA, Mahley RW. Intravenous heparinase inhibits remnant lipoprotein clearance from the plasma and uptake by the liver: in vivo role of heparan sulfate proteoglycans. J Lipid Res. 1995 Mar;36(3):583–592. [PubMed]
  • Windler E, Greeve J, Robenek H, Rinninger F, Greten H, Jäckle S. Differences in the mechanisms of uptake and endocytosis of small and large chylomicron remnants by rat liver. Hepatology. 1996 Aug;24(2):344–351. [PubMed]
  • Reiland J, Rapraeger AC. Heparan sulfate proteoglycan and FGF receptor target basic FGF to different intracellular destinations. J Cell Sci. 1993 Aug;105(Pt 4):1085–1093. [PubMed]
  • Kounnas MZ, Chappell DA, Wong H, Argraves WS, Strickland DK. The cellular internalization and degradation of hepatic lipase is mediated by low density lipoprotein receptor-related protein and requires cell surface proteoglycans. J Biol Chem. 1995 Apr 21;270(16):9307–9312. [PubMed]
  • Berryman DE, Bensadoun A. Heparan sulfate proteoglycans are primarily responsible for the maintenance of enzyme activity, binding, and degradation of lipoprotein lipase in Chinese hamster ovary cells. J Biol Chem. 1995 Oct 13;270(41):24525–24531. [PubMed]
  • Gleizes PE, Noaillac-Depeyre J, Amalric F, Gas N. Basic fibroblast growth factor (FGF-2) internalization through the heparan sulfate proteoglycans-mediated pathway: an ultrastructural approach. Eur J Cell Biol. 1995 Jan;66(1):47–59. [PubMed]
  • Mali M, Jaakkola P, Arvilommi AM, Jalkanen M. Sequence of human syndecan indicates a novel gene family of integral membrane proteoglycans. J Biol Chem. 1990 Apr 25;265(12):6884–6889. [PubMed]
  • Bernfield M, Kokenyesi R, Kato M, Hinkes MT, Spring J, Gallo RL, Lose EJ. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol. 1992;8:365–393. [PubMed]
  • David G. Integral membrane heparan sulfate proteoglycans. FASEB J. 1993 Aug;7(11):1023–1030. [PubMed]
  • Hayashi K, Hayashi M, Jalkanen M, Firestone JH, Trelstad RL, Bernfield M. Immunocytochemistry of cell surface heparan sulfate proteoglycan in mouse tissues. A light and electron microscopic study. J Histochem Cytochem. 1987 Oct;35(10):1079–1088. [PubMed]
  • Roskams T, Moshage H, De Vos R, Guido D, Yap P, Desmet V. Heparan sulfate proteoglycan expression in normal human liver. Hepatology. 1995 Apr;21(4):950–958. [PubMed]
  • Kojima T, Shworak NW, Rosenberg RD. Molecular cloning and expression of two distinct cDNA-encoding heparan sulfate proteoglycan core proteins from a rat endothelial cell line. J Biol Chem. 1992 Mar 5;267(7):4870–4877. [PubMed]
  • Cizmeci-Smith G, Stahl RC, Showalter LJ, Carey DJ. Differential expression of transmembrane proteoglycans in vascular smooth muscle cells. J Biol Chem. 1993 Sep 5;268(25):18740–18747. [PubMed]
  • Yeaman C, Rapraeger AC. Post-transcriptional regulation of syndecan-1 expression by cAMP in peritoneal macrophages. J Cell Biol. 1993 Aug;122(4):941–950. [PMC free article] [PubMed]
  • Weiner OH, Zoremba M, Gressner AM. Gene expression of syndecans and betaglycan in isolated rat liver cells. Cell Tissue Res. 1996 Jul;285(1):11–16. [PubMed]
  • Spring J, Paine-Saunders SE, Hynes RO, Bernfield M. Drosophila syndecan: conservation of a cell-surface heparan sulfate proteoglycan. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3334–3338. [PMC free article] [PubMed]
  • Socorro L, Green CC, Jackson RL. Preparation of a homogeneous and stable form of bovine milk lipoprotein lipase. Prep Biochem. 1985;15(3):133–143. [PubMed]
  • Williams KJ, Petrie KA, Brocia RW, Swenson TL. Lipoprotein lipase modulates net secretory output of apolipoprotein B in vitro. A possible pathophysiologic explanation for familial combined hyperlipidemia. J Clin Invest. 1991 Oct;88(4):1300–1306. [PMC free article] [PubMed]
  • Tuszynski GP, Srivastava S, Switalska HI, Holt JC, Cierniewski CS, Niewiarowski S. The interaction of human platelet thrombospondin with fibrinogen. Thrombospondin purification and specificity of interaction. J Biol Chem. 1985 Oct 5;260(22):12240–12245. [PubMed]
  • Williams SE, Ashcom JD, Argraves WS, Strickland DK. A novel mechanism for controlling the activity of alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein. Multiple regulatory sites for 39-kDa receptor-associated protein. J Biol Chem. 1992 May 5;267(13):9035–9040. [PubMed]
  • Goldstein JL, Basu SK, Brown MS. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 1983;98:241–260. [PubMed]
  • Lund-Katz S, Ibdah JA, Letizia JY, Thomas MT, Phillips MC. A 13C NMR characterization of lysine residues in apolipoprotein B and their role in binding to the low density lipoprotein receptor. J Biol Chem. 1988 Sep 25;263(27):13831–13838. [PubMed]
  • Leppä S, Mali M, Miettinen HM, Jalkanen M. Syndecan expression regulates cell morphology and growth of mouse mammary epithelial tumor cells. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):932–936. [PMC free article] [PubMed]
  • Pierce A, Lyon M, Hampson IN, Cowling GJ, Gallagher JT. Molecular cloning of the major cell surface heparan sulfate proteoglycan from rat liver. J Biol Chem. 1992 Feb 25;267(6):3894–3900. [PubMed]
  • Kozak M. Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Res. 1981 Oct 24;9(20):5233–5252. [PMC free article] [PubMed]
  • Allen JM, Seed B. Isolation and expression of functional high-affinity Fc receptor complementary DNAs. Science. 1989 Jan 20;243(4889):378–381. [PubMed]
  • Asundi VK, Carey DJ. Self-association of N-syndecan (syndecan-3) core protein is mediated by a novel structural motif in the transmembrane domain and ectodomain flanking region. J Biol Chem. 1995 Nov 3;270(44):26404–26410. [PubMed]
  • Carey DJ, Stahl RC, Tucker B, Bendt KA, Cizmeci-Smith G. Aggregation-induced association of syndecan-1 with microfilaments mediated by the cytoplasmic domain. Exp Cell Res. 1994 Sep;214(1):12–21. [PubMed]
  • Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987 Apr 25;262(12):5592–5595. [PubMed]
  • Lehrich RW, Forrest JN., Jr Tyrosine phosphorylation is a novel pathway for regulation of chloride secretion in shark rectal gland. Am J Physiol. 1995 Oct;269(4 Pt 2):F594–F600. [PubMed]
  • Markwell MA, Haas SM, Bieber LL, Tolbert NE. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. [PubMed]
  • Davis W, Harrison PT, Hutchinson MJ, Allen JM. Two distinct regions of FC gamma RI initiate separate signalling pathways involved in endocytosis and phagocytosis. EMBO J. 1995 Feb 1;14(3):432–441. [PMC free article] [PubMed]
  • Chappell DA, Fry GL, Waknitz MA, Iverius PH, Williams SE, Strickland DK. The low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor binds and mediates catabolism of bovine milk lipoprotein lipase. J Biol Chem. 1992 Dec 25;267(36):25764–25767. [PubMed]
  • Sun X, Mosher DF, Rapraeger A. Heparan sulfate-mediated binding of epithelial cell surface proteoglycan to thrombospondin. J Biol Chem. 1989 Feb 15;264(5):2885–2889. [PubMed]
  • Corless CL, Mendoza A, Collins T, Lawler J. Colocalization of thrombospondin and syndecan during murine development. Dev Dyn. 1992 Apr;193(4):346–358. [PubMed]
  • Sun X, Kaesberg PR, Choay J, Harenberg J, Ershler WB, Mosher DF. Effects of sized heparin oligosaccharide on the interactions of Chinese hamster ovary cell with thrombospondin. Semin Thromb Hemost. 1992;18(2):243–251. [PubMed]
  • Booth WJ, Castaldi PA, Berndt MC. Platelet thrombospondin haemagglutinin activity is due to aggregate formation. Thromb Res. 1985 Jul 1;39(1):29–42. [PubMed]
  • van de Winkel JG, Capel PJ. Human IgG Fc receptor heterogeneity: molecular aspects and clinical implications. Immunol Today. 1993 May;14(5):215–221. [PubMed]
  • Kruskal BA, Sastry K, Warner AB, Mathieu CE, Ezekowitz RA. Phagocytic chimeric receptors require both transmembrane and cytoplasmic domains from the mannose receptor. J Exp Med. 1992 Dec 1;176(6):1673–1680. [PMC free article] [PubMed]
  • Tabas I, Myers JN, Innerarity TL, Xu XX, Arnold K, Boyles J, Maxfield FR. The influence of particle size and multiple apoprotein E-receptor interactions on the endocytic targeting of beta-VLDL in mouse peritoneal macrophages. J Cell Biol. 1991 Dec;115(6):1547–1560. [PMC free article] [PubMed]
  • Weigel PH, Oka JA. Endocytosis and degradation mediated by the asialoglycoprotein receptor in isolated rat hepatocytes. J Biol Chem. 1982 Feb 10;257(3):1201–1207. [PubMed]
  • Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986 Apr 4;232(4746):34–47. [PubMed]
  • Warshawsky I, Schwartz AL. The 39-kDa protein regulates LRP activity in cultured endothelial and smooth muscle cells. Eur J Cell Biol. 1996 Feb;69(2):156–165. [PubMed]
  • Rapraeger A, Jalkanen M, Bernfield M. Cell surface proteoglycan associates with the cytoskeleton at the basolateral cell surface of mouse mammary epithelial cells. J Cell Biol. 1986 Dec;103(6 Pt 2):2683–2696. [PMC free article] [PubMed]
  • Reiland J, Ott VL, Lebakken CS, Yeaman C, McCarthy J, Rapraeger AC. Pervanadate activation of intracellular kinases leads to tyrosine phosphorylation and shedding of syndecan-1. Biochem J. 1996 Oct 1;319(Pt 1):39–47. [PMC free article] [PubMed]
  • Luton F, Buferne M, Davoust J, Schmitt-Verhulst AM, Boyer C. Evidence for protein tyrosine kinase involvement in ligand-induced TCR/CD3 internalization and surface redistribution. J Immunol. 1994 Jul 1;153(1):63–72. [PubMed]
  • Kokenyesi R, Bernfield M. Core protein structure and sequence determine the site and presence of heparan sulfate and chondroitin sulfate on syndecan-1. J Biol Chem. 1994 Apr 22;269(16):12304–12309. [PubMed]
  • Lyon M, Deakin JA, Gallagher JT. Liver heparan sulfate structure. A novel molecular design. J Biol Chem. 1994 Apr 15;269(15):11208–11215. [PubMed]
  • Fransson LA, Carlstedt I, Cöster L, Malmström A. Proteoheparan sulfate from human skin fibroblasts. Evidence for self-interaction via the heparan sulfate side chains. J Biol Chem. 1983 Dec 10;258(23):14342–14345. [PubMed]
  • Nader HB, Ferreira TM, Toma L, Chavante SF, Dietrich CP, Casu B, Torri G. Maintenance of heparan sulfate structure throughout evolution: chemical and enzymic degradation, and 13C-n.m.r.-spectral evidence. Carbohydr Res. 1988 Dec 31;184:292–300. [PubMed]
  • Hayashi K, Madri JA, Yurchenco PD. Endothelial cells interact with the core protein of basement membrane perlecan through beta 1 and beta 3 integrins: an adhesion modulated by glycosaminoglycan. J Cell Biol. 1992 Nov;119(4):945–959. [PMC free article] [PubMed]
  • Herz J, Qiu SQ, Oesterle A, DeSilva HV, Shafi S, Havel RJ. Initial hepatic removal of chylomicron remnants is unaffected but endocytosis is delayed in mice lacking the low density lipoprotein receptor. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4611–4615. [PMC free article] [PubMed]
  • Rapraeger AC, Krufka A, Olwin BB. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science. 1991 Jun 21;252(5013):1705–1708. [PubMed]
  • Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991 Feb 22;64(4):841–848. [PubMed]
  • Mikhailenko I, Kounnas MZ, Strickland DK. Low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor mediates the cellular internalization and degradation of thrombospondin. A process facilitated by cell-surface proteoglycans. J Biol Chem. 1995 Apr 21;270(16):9543–9549. [PubMed]
  • Deckert M, Ticchioni M, Bernard A. Endocytosis of GPI-anchored proteins in human lymphocytes: role of glycolipid-based domains, actin cytoskeleton, and protein kinases. J Cell Biol. 1996 May;133(4):791–799. [PMC free article] [PubMed]
  • Parton RG, Joggerst B, Simons K. Regulated internalization of caveolae. J Cell Biol. 1994 Dec;127(5):1199–1215. [PMC free article] [PubMed]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem chemical compound records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records. Multiple substance records may contribute to the PubChem compound record.
  • Gene
    Gene records that cite the current articles. Citations in Gene are added manually by NCBI or imported from outside public resources.
  • GEO Profiles
    GEO Profiles
    Gene Expression Omnibus (GEO) Profiles of molecular abundance data. The current articles are references on the Gene record associated with the GEO profile.
  • HomoloGene
    HomoloGene clusters of homologous genes and sequences that cite the current articles. These are references on the Gene and sequence records in the HomoloGene entry.
  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.
  • Taxonomy
    Taxonomy records associated with the current articles through taxonomic information on related molecular database records (Nucleotide, Protein, Gene, SNP, Structure).
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...