• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jcinvestThe Journal of Clinical InvestigationCurrent IssueArchiveSubscriptionAbout the Journal
J Clin Invest. Apr 1, 1997; 99(7): 1774–1785.
PMCID: PMC507999

Preferential replication of HIV-1 in the CD45RO memory cell subset of primary CD4 lymphocytes in vitro.


The ability of HIV-1 to establish an infection and replicate to high copy number in CD4 lymphocytes is dependent on both the activation state of the cell and virus-encoded regulatory proteins that modulate viral gene expression. To study these required virus-cell interactions, we have used an in vitro cell model of acute HIV infection of quiescent, primary CD4 lymphocytes and subsequent induction of T cell activation and virus replication by lectin or CD3 receptor cross-linking. Experiments were done to determine if the capacity of HIV to establish infection and complete replication was impacted by the maturational state of the CD4 cell target or the specific signal induction pathway engaged during activation. Primary CD4 cells were FACS-sorted into the major phenotypic subsets representative of memory (CD45RO) and naive (CD45RA) cells. Levels of virus replication were compared between infection with wild-type NL4-3 virus and an isogenic mutant containing a deletion in nef regulatory gene. PHA mitogen stimulation was compared with anti-CD3, with and without anti-CD28 costimulation, for induction of cell proliferation and virus replication. In both infected and uninfected cells, the RA cell subset exhibited significantly greater response to CD3/CD28 stimulation than did the RO cell subset. In contrast, the majority of virus replication occurred consistently in the RO cell subset. Deletion of HIV nef function caused a severe reduction in viral replication, especially in the RA naive cell subset after CD3 induction. PCR analysis of viral DNA formation, during infection of quiescent cells, demonstrated that the observed differences in HIV replication capacity between RO and RA cell subsets were not due to inherent differences in cell susceptibility to infection. Our results indicate that HIV replication is enhanced selectively in CD45RO memory phenotype cells through the probable contribution of specialized cellular factors which are produced during CD3-initiated signal transduction.

Full Text

The Full Text of this article is available as a PDF (292K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Fauci AS, Schnittman SM, Poli G, Koenig S, Pantaleo G. NIH conference. Immunopathogenic mechanisms in human immunodeficiency virus (HIV) infection. Ann Intern Med. 1991 Apr 15;114(8):678–693. [PubMed]
  • Oyaizu N, McCloskey TW, Coronesi M, Chirmule N, Kalyanaraman VS, Pahwa S. Accelerated apoptosis in peripheral blood mononuclear cells (PBMCs) from human immunodeficiency virus type-1 infected patients and in CD4 cross-linked PBMCs from normal individuals. Blood. 1993 Dec 1;82(11):3392–3400. [PubMed]
  • Dalgleish AG. Immunobiological aspects of HIV treatment. Curr Opin Immunol. 1993 Aug;5(4):608–614. [PubMed]
  • Mosmann TR. Cytokine patterns during the progression to AIDS. Science. 1994 Jul 8;265(5169):193–194. [PubMed]
  • Stevenson M, Stanwick TL, Dempsey MP, Lamonica CA. HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J. 1990 May;9(5):1551–1560. [PMC free article] [PubMed]
  • Zack JA, Haislip AM, Krogstad P, Chen IS. Incompletely reverse-transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral life cycle. J Virol. 1992 Mar;66(3):1717–1725. [PMC free article] [PubMed]
  • Bukrinsky MI, Haggerty S, Dempsey MP, Sharova N, Adzhubel A, Spitz L, Lewis P, Goldfarb D, Emerman M, Stevenson M. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature. 1993 Oct 14;365(6447):666–669. [PubMed]
  • von Schwedler U, Kornbluth RS, Trono D. The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6992–6996. [PMC free article] [PubMed]
  • Feinberg MB, Jarrett RF, Aldovini A, Gallo RC, Wong-Staal F. HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA. Cell. 1986 Sep 12;46(6):807–817. [PubMed]
  • Kim SY, Byrn R, Groopman J, Baltimore D. Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: evidence for differential gene expression. J Virol. 1989 Sep;63(9):3708–3713. [PMC free article] [PubMed]
  • Pavlakis GN, Felber BK. Regulation of expression of human immunodeficiency virus. New Biol. 1990 Jan;2(1):20–31. [PubMed]
  • Feinberg MB, Greene WC. Molecular insights into human immunodeficiency virus type 1 pathogenesis. Curr Opin Immunol. 1992 Aug;4(4):466–474. [PubMed]
  • Cullen BR. The role of Nef in the replication cycle of the human and simian immunodeficiency viruses. Virology. 1994 Nov 15;205(1):1–6. [PubMed]
  • Tong-Starkesen SE, Luciw PA, Peterlin BM. Signaling through T lymphocyte surface proteins, TCR/CD3 and CD28, activates the HIV-1 long terminal repeat. J Immunol. 1989 Jan 15;142(2):702–707. [PubMed]
  • Schmidt A, Hennighausen L, Siebenlist U. Inducible nuclear factor binding to the kappa B elements of the human immunodeficiency virus enhancer in T cells can be blocked by cyclosporin A in a signal-dependent manner. J Virol. 1990 Aug;64(8):4037–4041. [PMC free article] [PubMed]
  • Dasgupta P, Saikumar P, Reddy CD, Reddy EP. Myb protein binds to human immunodeficiency virus 1 long terminal repeat (LTR) sequences and transactivates LTR-mediated transcription. Proc Natl Acad Sci U S A. 1990 Oct;87(20):8090–8094. [PMC free article] [PubMed]
  • McDougal JS, Mawle A, Cort SP, Nicholson JK, Cross GD, Scheppler-Campbell JA, Hicks D, Sligh J. Cellular tropism of the human retrovirus HTLV-III/LAV. I. Role of T cell activation and expression of the T4 antigen. J Immunol. 1985 Nov;135(5):3151–3162. [PubMed]
  • Zagury D, Bernard J, Leonard R, Cheynier R, Feldman M, Sarin PS, Gallo RC. Long-term cultures of HTLV-III--infected T cells: a model of cytopathology of T-cell depletion in AIDS. Science. 1986 Feb 21;231(4740):850–853. [PubMed]
  • Margolick JB, Volkman DJ, Folks TM, Fauci AS. Amplification of HTLV-III/LAV infection by antigen-induced activation of T cells and direct suppression by virus of lymphocyte blastogenic responses. J Immunol. 1987 Mar 15;138(6):1719–1723. [PubMed]
  • Smith SH, Brown MH, Rowe D, Callard RE, Beverley PC. Functional subsets of human helper-inducer cells defined by a new monoclonal antibody, UCHL1. Immunology. 1986 May;58(1):63–70. [PMC free article] [PubMed]
  • Clement LT, Yamashita N, Martin AM. The functionally distinct subpopulations of human CD4+ helper/inducer T lymphocytes defined by anti-CD45R antibodies derive sequentially from a differentiation pathway that is regulated by activation-dependent post-thymic differentiation. J Immunol. 1988 Sep 1;141(5):1464–1470. [PubMed]
  • Akbar AN, Terry L, Timms A, Beverley PC, Janossy G. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J Immunol. 1988 Apr 1;140(7):2171–2178. [PubMed]
  • Merkenschlager M, Terry L, Edwards R, Beverley PC. Limiting dilution analysis of proliferative responses in human lymphocyte populations defined by the monoclonal antibody UCHL1: implications for differential CD45 expression in T cell memory formation. Eur J Immunol. 1988 Nov;18(11):1653–1661. [PubMed]
  • Sanders ME, Makgoba MW, Sharrow SO, Stephany D, Springer TA, Young HA, Shaw S. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J Immunol. 1988 Mar 1;140(5):1401–1407. [PubMed]
  • Ferrer JM, Plaza A, Kreisler M, Díaz-Espada F. Differential interleukin secretion by in vitro activated human CD45RA and CD45RO CD4+ T cell subsets. Cell Immunol. 1992 Apr 15;141(1):10–20. [PubMed]
  • Michie CA, McLean A, Alcock C, Beverley PC. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature. 1992 Nov 19;360(6401):264–265. [PubMed]
  • Tough DF, Sprent J. Turnover of naive- and memory-phenotype T cells. J Exp Med. 1994 Apr 1;179(4):1127–1135. [PMC free article] [PubMed]
  • Miedema F. Immunological abnormalities in the natural history of HIV infection: mechanisms and clinical relevance. Immunodefic Rev. 1992;3(3):173–193. [PubMed]
  • Chou CC, Gudeman V, O'Rourke S, Isacescu V, Detels R, Williams GJ, Mitsuyasu RT, Giorgi JV. Phenotypically defined memory CD4+ cells are not selectively decreased in chronic HIV disease. J Acquir Immune Defic Syndr. 1994 Jul;7(7):665–675. [PubMed]
  • Meyaard L, Otto SA, Hooibrink B, Miedema F. Quantitative analysis of CD4+ T cell function in the course of human immunodeficiency virus infection. Gradual decline of both naive and memory alloreactive T cells. J Clin Invest. 1994 Nov;94(5):1947–1952. [PMC free article] [PubMed]
  • Bruunsgaard H, Pedersen C, Scheibel E, Pedersen BK. Increase in percentage of CD45RO+/CD8+ cells is associated with previous severe primary HIV infection. J Acquir Immune Defic Syndr Hum Retrovirol. 1995 Oct 1;10(2):107–114. [PubMed]
  • Schellekens PT, Roos MT, De Wolf F, Lange JM, Miedema F. Low T-cell responsiveness to activation via CD3/TCR is a prognostic marker for acquired immunodeficiency syndrome (AIDS) in human immunodeficiency virus-1 (HIV-1)-infected men. J Clin Immunol. 1990 Mar;10(2):121–127. [PubMed]
  • Cayota A, Vuillier F, Scott-Algara D, Feuillie V, Dighiero G. Impaired proliferative capacity and abnormal cytokine profile of naive and memory CD4 T cells from HIV-seropositive patients. Clin Exp Immunol. 1992 Jun;88(3):478–483. [PMC free article] [PubMed]
  • Janossy G, Borthwick N, Lomnitzer R, Medina E, Squire SB, Phillips AN, Lipman M, Johnson MA, Lee C, Bofill M. Lymphocyte activation in HIV-1 infection. I. Predominant proliferative defects among CD45R0+ cells of the CD4 and CD8 lineages. AIDS. 1993 May;7(5):613–624. [PubMed]
  • Medina E, Borthwick N, Johnson MA, Miller S, Bofill M. Flow cytometric analysis of the stimulatory response of T cell subsets from normal and HIV-1+ individuals to various mitogenic stimuli in vitro. Clin Exp Immunol. 1994 Aug;97(2):266–272. [PMC free article] [PubMed]
  • Schnittman SM, Lane HC, Greenhouse J, Justement JS, Baseler M, Fauci AS. Preferential infection of CD4+ memory T cells by human immunodeficiency virus type 1: evidence for a role in the selective T-cell functional defects observed in infected individuals. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6058–6062. [PMC free article] [PubMed]
  • Spina CA, Kwoh TJ, Chowers MY, Guatelli JC, Richman DD. The importance of nef in the induction of human immunodeficiency virus type 1 replication from primary quiescent CD4 lymphocytes. J Exp Med. 1994 Jan 1;179(1):115–123. [PMC free article] [PubMed]
  • Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A, Martin MA. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol. 1986 Aug;59(2):284–291. [PMC free article] [PubMed]
  • Folks T, Benn S, Rabson A, Theodore T, Hoggan MD, Martin M, Lightfoote M, Sell K. Characterization of a continuous T-cell line susceptible to the cytopathic effects of the acquired immunodeficiency syndrome (AIDS)-associated retrovirus. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4539–4543. [PMC free article] [PubMed]
  • Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7413–7417. [PMC free article] [PubMed]
  • Haertle T, Carrera CJ, Wasson DB, Sowers LC, Richman DD, Carson DA. Metabolism and anti-human immunodeficiency virus-1 activity of 2-halo-2',3'-dideoxyadenosine derivatives. J Biol Chem. 1988 Apr 25;263(12):5870–5875. [PubMed]
  • Spina CA, Guatelli JC, Richman DD. Establishment of a stable, inducible form of human immunodeficiency virus type 1 DNA in quiescent CD4 lymphocytes in vitro. J Virol. 1995 May;69(5):2977–2988. [PMC free article] [PubMed]
  • Baroja ML, Lorre K, Van Vaeck F, Ceuppens JL. The anti-T cell monoclonal antibody 9.3 (anti-CD28) provides a helper signal and bypasses the need for accessory cells in T cell activation with immobilized anti-CD3 and mitogens. Cell Immunol. 1989 Apr 15;120(1):205–217. [PubMed]
  • Guatelli JC, Gingeras TR, Richman DD. Alternative splice acceptor utilization during human immunodeficiency virus type 1 infection of cultured cells. J Virol. 1990 Sep;64(9):4093–4098. [PMC free article] [PubMed]
  • Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell. 1990 Apr 20;61(2):213–222. [PubMed]
  • Davis GR, Blumeyer K, DiMichele LJ, Whitfield KM, Chappelle H, Riggs N, Ghosh SS, Kao PM, Fahy E, Kwoh DY, et al. Detection of human immunodeficiency virus type 1 in AIDS patients using amplification-mediated hybridization analyses: reproducibility and quantitative limitations. J Infect Dis. 1990 Jul;162(1):13–20. [PubMed]
  • Liu Y, Linsley PS. Costimulation of T-cell growth. Curr Opin Immunol. 1992 Jun;4(3):265–270. [PubMed]
  • Jenkins MK, Taylor PS, Norton SD, Urdahl KB. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J Immunol. 1991 Oct 15;147(8):2461–2466. [PubMed]
  • Schwartz RH. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell. 1992 Dec 24;71(7):1065–1068. [PubMed]
  • Levine BL, Mosca JD, Riley JL, Carroll RG, Vahey MT, Jagodzinski LL, Wagner KF, Mayers DL, Burke DS, Weislow OS, et al. Antiviral effect and ex vivo CD4+ T cell proliferation in HIV-positive patients as a result of CD28 costimulation. Science. 1996 Jun 28;272(5270):1939–1943. [PubMed]
  • Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature. 1996 Jun 20;381(6584):667–673. [PubMed]
  • Hazan U, Thomas D, Alcami J, Bachelerie F, Israel N, Yssel H, Virelizier JL, Arenzana-Seisdedos F. Stimulation of a human T-cell clone with anti-CD3 or tumor necrosis factor induces NF-kappa B translocation but not human immunodeficiency virus 1 enhancer-dependent transcription. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7861–7865. [PMC free article] [PubMed]
  • Moran PA, Diegel ML, Sias JC, Ledbetter JA, Zarling JM. Regulation of HIV production by blood mononuclear cells from HIV-infected donors: I. Lack of correlation between HIV-1 production and T cell activation. AIDS Res Hum Retroviruses. 1993 May;9(5):455–464. [PubMed]
  • Asjö B, Cefai D, Debré P, Dudoit Y, Autran B. A novel mode of human immunodeficiency virus type 1 (HIV-1) activation: ligation of CD28 alone induces HIV-1 replication in naturally infected lymphocytes. J Virol. 1993 Jul;67(7):4395–4398. [PMC free article] [PubMed]
  • Helbert MR, L'age-Stehr J, Mitchison NA. Antigen presentation, loss of immunological memory and AIDS. Immunol Today. 1993 Jul;14(7):340–344. [PubMed]
  • Cayota A, Vuillier F, Scott-Algara D, Feuillie V, Dighiero G. Differential requirements for HIV-1 replication in naive and memory CD4 T cells from asymptomatic HIV-1 seropositive carriers and AIDS patients. Clin Exp Immunol. 1993 Feb;91(2):241–248. [PMC free article] [PubMed]
  • Rothstein DM, da Silva A, Sugita K, Yamamoto M, Prasad KV, Morimoto C, Schlossman SF, Rudd CE. Human CD4/CD45RA+ and CD4/CD45RA- T cell subsets express CD4-p56lck complexes, CD4-associated lipid kinases, TCR/CD3-p59fyn complexes, and share similar tyrosine kinase substrates. Int Immunol. 1993 Apr;5(4):409–418. [PubMed]
  • Janeway CA, Jr, Bottomly K. Signals and signs for lymphocyte responses. Cell. 1994 Jan 28;76(2):275–285. [PubMed]
  • Woods TC, Roberts BD, Butera ST, Folks TM. Loss of inducible virus in CD45RA naive cells after human immunodeficiency virus-1 entry accounts for preferential viral replication in CD45RO memory cells. Blood. 1997 Mar 1;89(5):1635–1641. [PubMed]
  • Baur AS, Sawai ET, Dazin P, Fantl WJ, Cheng-Mayer C, Peterlin BM. HIV-1 Nef leads to inhibition or activation of T cells depending on its intracellular localization. Immunity. 1994 Aug;1(5):373–384. [PubMed]
  • Sawai ET, Baur A, Struble H, Peterlin BM, Levy JA, Cheng-Mayer C. Human immunodeficiency virus type 1 Nef associates with a cellular serine kinase in T lymphocytes. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1539–1543. [PMC free article] [PubMed]
  • Bodéus M, Marie-Cardine A, Bougeret C, Ramos-Morales F, Benarous R. In vitro binding and phosphorylation of human immunodeficiency virus type 1 Nef protein by serine/threonine protein kinase. J Gen Virol. 1995 Jun;76(Pt 6):1337–1344. [PubMed]
  • Collette Y, Dutartre H, Benziane A, Ramos-Morales, Benarous R, Harris M, Olive D. Physical and functional interaction of Nef with Lck. HIV-1 Nef-induced T-cell signaling defects. J Biol Chem. 1996 Mar 15;271(11):6333–6341. [PubMed]
  • Guy B, Kieny MP, Riviere Y, Le Peuch C, Dott K, Girard M, Montagnier L, Lecocq JP. HIV F/3' orf encodes a phosphorylated GTP-binding protein resembling an oncogene product. Nature. 1987 Nov 19;330(6145):266–269. [PubMed]
  • Garcia JV, Miller AD. Serine phosphorylation-independent downregulation of cell-surface CD4 by nef. Nature. 1991 Apr 11;350(6318):508–511. [PubMed]
  • Luria S, Chambers I, Berg P. Expression of the type 1 human immunodeficiency virus Nef protein in T cells prevents antigen receptor-mediated induction of interleukin 2 mRNA. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5326–5330. [PMC free article] [PubMed]
  • Niederman TM, Garcia JV, Hastings WR, Luria S, Ratner L. Human immunodeficiency virus type 1 Nef protein inhibits NF-kappa B induction in human T cells. J Virol. 1992 Oct;66(10):6213–6219. [PMC free article] [PubMed]
  • Niederman TM, Hastings WR, Luria S, Bandres JC, Ratner L. HIV-1 Nef protein inhibits the recruitment of AP-1 DNA-binding activity in human T-cells. Virology. 1993 May;194(1):338–344. [PubMed]
  • Koyanagi Y, Miles S, Mitsuyasu RT, Merrill JE, Vinters HV, Chen IS. Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms. Science. 1987 May 15;236(4803):819–822. [PubMed]
  • Seshamma T, Bagasra O, Trono D, Baltimore D, Pomerantz RJ. Blocked early-stage latency in the peripheral blood cells of certain individuals infected with human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10663–10667. [PMC free article] [PubMed]
  • Roederer M, Dubs JG, Anderson MT, Raju PA, Herzenberg LA, Herzenberg LA. CD8 naive T cell counts decrease progressively in HIV-infected adults. J Clin Invest. 1995 May;95(5):2061–2066. [PMC free article] [PubMed]
  • Tassinari P, Deibis L, Blanca I, Bianco NE, Echeverría de Pérez G. Decreased T-cell proliferative response to common environmental antigens could be an indicator of early human immunodeficiency virus-mediated lymphocyte lesions. Clin Diagn Lab Immunol. 1995 Jul;2(4):404–407. [PMC free article] [PubMed]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...