• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jcinvestThe Journal of Clinical InvestigationCurrent IssueArchiveSubscriptionAbout the Journal
J Clin Invest. Jan 15, 1997; 99(2): 239–247.
PMCID: PMC507791

EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing's sarcoma and primitive neuroectodermal tumor cells.

Abstract

The translocation t(11;22) is a common chromosomal abnormality detected both in Ewing's sarcoma and in primitive neuroectodermal tumor cells. The translocation results in an EWS-Fli1 fusion gene, made up of the 5' half of the EWS gene on chromosome 22 fused to the 3' half of the Fli1 gene on chromosome 11. Recent studies have evaluated possible roles of the fusion gene products. However, the biological significance of EWS-Fli1 is still unknown. Using a competitive polymerase chain reaction technique, we show here that there might be a correlation between the expression levels of the EWS-Fli1 fusion gene and the proliferative activities of Ewing's sarcoma and primitive neuroectodermal tumor cells. When the EWS-Fli1 expression is inhibited by antisense oligodeoxynucleotides against the fusion RNA, the growth of the tumor cells is significantly reduced both in vitro and in vivo. The data further indicate the growth inhibition of the cells by the antisense sequence might be mediated by G0/G1 block in the cell cycle progression. These results suggest that EWS-Fli1 may play an important role in the proliferation of the tumor cells, and the EWS-Fli1 fusion RNA could be used as a target to inhibit the growth of Ewing's sarcoma and primitive neuroectodermal tumor with the specific antisense oligonucleotide.

Full Text

The Full Text of this article is available as a PDF (281K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Rabbitts TH. Chromosomal translocations in human cancer. Nature. 1994 Nov 10;372(6502):143–149. [PubMed]
  • Sreekantaiah C, Ladanyi M, Rodriguez E, Chaganti RS. Chromosomal aberrations in soft tissue tumors. Relevance to diagnosis, classification, and molecular mechanisms. Am J Pathol. 1994 Jun;144(6):1121–1134. [PMC free article] [PubMed]
  • Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, Kovar H, Joubert I, de Jong P, Rouleau G, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature. 1992 Sep 10;359(6391):162–165. [PubMed]
  • Crozat A, Aman P, Mandahl N, Ron D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature. 1993 Jun 17;363(6430):640–644. [PubMed]
  • Rabbitts TH, Forster A, Larson R, Nathan P. Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet. 1993 Jun;4(2):175–180. [PubMed]
  • Barr FG, Galili N, Holick J, Biegel JA, Rovera G, Emanuel BS. Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet. 1993 Feb;3(2):113–117. [PubMed]
  • Galili N, Davis RJ, Fredericks WJ, Mukhopadhyay S, Rauscher FJ, 3rd, Emanuel BS, Rovera G, Barr FG. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet. 1993 Nov;5(3):230–235. [PubMed]
  • Clark J, Rocques PJ, Crew AJ, Gill S, Shipley J, Chan AM, Gusterson BA, Cooper CS. Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet. 1994 Aug;7(4):502–508. [PubMed]
  • Whang-Peng J, Triche TJ, Knutsen T, Miser J, Douglass EC, Israel MA. Chromosome translocation in peripheral neuroepithelioma. N Engl J Med. 1984 Aug 30;311(9):584–585. [PubMed]
  • Whang-Peng J, Triche TJ, Knutsen T, Miser J, Kao-Shan S, Tsai S, Israel MA. Cytogenetic characterization of selected small round cell tumors of childhood. Cancer Genet Cytogenet. 1986 Apr 1;21(3):185–208. [PubMed]
  • Zhang L, Lemarchandel V, Romeo PH, Ben-David Y, Greer P, Bernstein A. The Fli-1 proto-oncogene, involved in erythroleukemia and Ewing's sarcoma, encodes a transcriptional activator with DNA-binding specificities distinct from other Ets family members. Oncogene. 1993 Jun;8(6):1621–1630. [PubMed]
  • May WA, Gishizky ML, Lessnick SL, Lunsford LB, Lewis BC, Delattre O, Zucman J, Thomas G, Denny CT. Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLI1 for transformation. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5752–5756. [PMC free article] [PubMed]
  • May WA, Lessnick SL, Braun BS, Klemsz M, Lewis BC, Lunsford LB, Hromas R, Denny CT. The Ewing's sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1. Mol Cell Biol. 1993 Dec;13(12):7393–7398. [PMC free article] [PubMed]
  • Ohno T, Rao VN, Reddy ES. EWS/Fli-1 chimeric protein is a transcriptional activator. Cancer Res. 1993 Dec 15;53(24):5859–5863. [PubMed]
  • Bailly RA, Bosselut R, Zucman J, Cormier F, Delattre O, Roussel M, Thomas G, Ghysdael J. DNA-binding and transcriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma. Mol Cell Biol. 1994 May;14(5):3230–3241. [PMC free article] [PubMed]
  • Mao X, Miesfeldt S, Yang H, Leiden JM, Thompson CB. The FLI-1 and chimeric EWS-FLI-1 oncoproteins display similar DNA binding specificities. J Biol Chem. 1994 Jul 8;269(27):18216–18222. [PubMed]
  • Braun BS, Frieden R, Lessnick SL, May WA, Denny CT. Identification of target genes for the Ewing's sarcoma EWS/FLI fusion protein by representational difference analysis. Mol Cell Biol. 1995 Aug;15(8):4623–4630. [PMC free article] [PubMed]
  • Ouchida M, Ohno T, Fujimura Y, Rao VN, Reddy ES. Loss of tumorigenicity of Ewing's sarcoma cells expressing antisense RNA to EWS-fusion transcripts. Oncogene. 1995 Sep 21;11(6):1049–1054. [PubMed]
  • Kovar H, Aryee DN, Jug G, Henöckl C, Schemper M, Delattre O, Thomas G, Gadner H. EWS/FLI-1 antagonists induce growth inhibition of Ewing tumor cells in vitro. Cell Growth Differ. 1996 Apr;7(4):429–437. [PubMed]
  • Crooke ST. Progress toward oligonucleotide therapeutics: pharmacodynamic properties. FASEB J. 1993 Apr 1;7(6):533–539. [PubMed]
  • Stein CA, Cheng YC. Antisense oligonucleotides as therapeutic agents--is the bullet really magical? Science. 1993 Aug 20;261(5124):1004–1012. [PubMed]
  • Haeuptle MT, Frank R, Dobberstein B. Translation arrest by oligodeoxynucleotides complementary to mRNA coding sequences yields polypeptides of predetermined length. Nucleic Acids Res. 1986 Feb 11;14(3):1427–1448. [PMC free article] [PubMed]
  • Walder RY, Walder JA. Role of RNase H in hybrid-arrested translation by antisense oligonucleotides. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5011–5015. [PMC free article] [PubMed]
  • Munroe SH. Antisense RNA inhibits splicing of pre-mRNA in vitro. EMBO J. 1988 Aug;7(8):2523–2532. [PMC free article] [PubMed]
  • Tanaka K, Iwamoto Y, Noguchi Y, Oda Y, Sugioka Y. The establishment and characterization of a peripheral neuroepithelioma cell line in soft tissue of extremity. Lab Invest. 1995 Feb;72(2):237–248. [PubMed]
  • Chen G, Jaffrézou JP, Fleming WH, Durán GE, Sikic BI. Prevalence of multidrug resistance related to activation of the mdr1 gene in human sarcoma mutants derived by single-step doxorubicin selection. Cancer Res. 1994 Sep 15;54(18):4980–4987. [PubMed]
  • Tanaka K, Iwamoto Y, Ito Y, Ishibashi T, Nakabeppu Y, Sekiguchi M, Sugioka Y. Cyclic AMP-regulated synthesis of the tissue inhibitors of metalloproteinases suppresses the invasive potential of the human fibrosarcoma cell line HT1080. Cancer Res. 1995 Jul 1;55(13):2927–2935. [PubMed]
  • Wilhelm SM, Collier IE, Marmer BL, Eisen AZ, Grant GA, Goldberg GI. SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem. 1989 Oct 15;264(29):17213–17221. [PubMed]
  • Nakabeppu Y, Oda S, Sekiguchi M. Proliferative activation of quiescent Rat-1A cells by delta FosB. Mol Cell Biol. 1993 Jul;13(7):4157–4166. [PMC free article] [PubMed]
  • Giovannini M, Biegel JA, Serra M, Wang JY, Wei YH, Nycum L, Emanuel BS, Evans GA. EWS-erg and EWS-Fli1 fusion transcripts in Ewing's sarcoma and primitive neuroectodermal tumors with variant translocations. J Clin Invest. 1994 Aug;94(2):489–496. [PMC free article] [PubMed]
  • Thiele CJ, McKeon C, Triche TJ, Ross RA, Reynolds CP, Israel MA. Differential protooncogene expression characterizes histopathologically indistinguishable tumors of the peripheral nervous system. J Clin Invest. 1987 Sep;80(3):804–811. [PMC free article] [PubMed]
  • McKeon C, Thiele CJ, Ross RA, Kwan M, Triche TJ, Miser JS, Israel MA. Indistinguishable patterns of protooncogene expression in two distinct but closely related tumors: Ewing's sarcoma and neuroepithelioma. Cancer Res. 1988 Aug 1;48(15):4307–4311. [PubMed]
  • Cavazzana AO, Miser JS, Jefferson J, Triche TJ. Experimental evidence for a neural origin of Ewing's sarcoma of bone. Am J Pathol. 1987 Jun;127(3):507–518. [PMC free article] [PubMed]
  • Noguera R, Triche TJ, Navarro S, Tsokos M, Llombart-Bosch A. Dynamic model of differentiation in Ewing's sarcoma cells. Comparative analysis of morphologic, immunocytochemical, and oncogene expression parameters. Lab Invest. 1992 Feb;66(2):143–151. [PubMed]
  • Wang AM, Doyle MV, Mark DF. Quantitation of mRNA by the polymerase chain reaction. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9717–9721. [PMC free article] [PubMed]
  • Gilliland G, Perrin S, Blanchard K, Bunn HF. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2725–2729. [PMC free article] [PubMed]
  • Siebert PD, Larrick JW. Competitive PCR. Nature. 1992 Oct 8;359(6395):557–558. [PubMed]
  • Peten EP, Striker LJ, Carome MA, Elliott SJ, Yang CW, Striker GE. The contribution of increased collagen synthesis to human glomerulosclerosis: a quantitative analysis of alpha 2IV collagen mRNA expression by competitive polymerase chain reaction. J Exp Med. 1992 Dec 1;176(6):1571–1576. [PMC free article] [PubMed]
  • Delattre O, Zucman J, Melot T, Garau XS, Zucker JM, Lenoir GM, Ambros PF, Sheer D, Turc-Carel C, Triche TJ, et al. The Ewing family of tumors--a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med. 1994 Aug 4;331(5):294–299. [PubMed]
  • Sorensen PH, Lessnick SL, Lopez-Terrada D, Liu XF, Triche TJ, Denny CT. A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet. 1994 Feb;6(2):146–151. [PubMed]
  • Jeon IS, Davis JN, Braun BS, Sublett JE, Roussel MF, Denny CT, Shapiro DN. A variant Ewing's sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene. 1995 Mar 16;10(6):1229–1234. [PubMed]
  • Zucman J, Delattre O, Desmaze C, Epstein AL, Stenman G, Speleman F, Fletchers CD, Aurias A, Thomas G. EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nat Genet. 1993 Aug;4(4):341–345. [PubMed]
  • Ladanyi M, Gerald W. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res. 1994 Jun 1;54(11):2837–2840. [PubMed]
  • Herschman HR. Primary response genes induced by growth factors and tumor promoters. Annu Rev Biochem. 1991;60:281–319. [PubMed]
  • Ransone LJ, Verma IM. Nuclear proto-oncogenes fos and jun. Annu Rev Cell Biol. 1990;6:539–557. [PubMed]
  • Kretzner L, Blackwood EM, Eisenman RN. Myc and Max proteins possess distinct transcriptional activities. Nature. 1992 Oct 1;359(6394):426–429. [PubMed]
  • Langer SJ, Bortner DM, Roussel MF, Sherr CJ, Ostrowski MC. Mitogenic signaling by colony-stimulating factor 1 and ras is suppressed by the ets-2 DNA-binding domain and restored by myc overexpression. Mol Cell Biol. 1992 Dec;12(12):5355–5362. [PMC free article] [PubMed]
  • Roussel MF, Davis JN, Cleveland JL, Ghysdael J, Hiebert SW. Dual control of myc expression through a single DNA binding site targeted by ets family proteins and E2F-1. Oncogene. 1994 Feb;9(2):405–415. [PubMed]
  • Burdach S, Jürgens H, Peters C, Nürnberger W, Mauz-Körholz C, Körholz D, Paulussen M, Pape H, Dilloo D, Koscielniak E, et al. Myeloablative radiochemotherapy and hematopoietic stem-cell rescue in poor-prognosis Ewing's sarcoma. J Clin Oncol. 1993 Aug;11(8):1482–1488. [PubMed]
  • Frassica FJ, Frassica DA, Pritchard DJ, Schomberg PJ, Wold LE, Sim FH. Ewing sarcoma of the pelvis. Clinicopathological features and treatment. J Bone Joint Surg Am. 1993 Oct;75(10):1457–1465. [PubMed]
  • Maygarden SJ, Askin FB, Siegal GP, Gilula LA, Schoppe J, Foulkes M, Kissane JM, Nesbit M. Ewing sarcoma of bone in infants and toddlers. A clinicopathologic report from the Intergroup Ewing's Study. Cancer. 1993 Mar 15;71(6):2109–2118. [PubMed]
  • Ladenstein R, Lasset C, Pinkerton R, Zucker JM, Peters C, Burdach S, Pardo N, Dallorso S, Coze C, Dollorso G. Impact of megatherapy in children with high-risk Ewing's tumours in complete remission: a report from the EBMT Solid Tumour Registry. Bone Marrow Transplant. 1995 May;15(5):697–705. [PubMed]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • MedGen
    MedGen
    Related information in MedGen
  • OMIM
    OMIM
    OMIM record citing PubMed
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...