• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jcinvestThe Journal of Clinical InvestigationCurrent IssueArchiveSubscriptionAbout the Journal
J Clin Invest. Dec 15, 1996; 98(12): 2866–2873.
PMCID: PMC507754

Functional analysis of the mutations in the human cardiac beta-myosin that are responsible for familial hypertrophic cardiomyopathy. Implication for the clinical outcome.

Abstract

More than 30 missense mutations in the beta-cardiac myosin heavy chain gene have been shown to be responsible for familial hypertrophic cardiomyopathy. To clarify the effects of these point mutations on myosin motor function, we expressed wild-type and mutant human beta-cardiac myosin heavy chains in insect cells with human cardiac light chains. The wild-type myosin was well purified with similar enzymatic and motor activities to those of the naturally isolated V3 cardiac myosin. Arg249-->Gln and Arg453-->Cys mutations resulted in decreased actin translocating activity (61 and 23% of the wild-type, respectively) with decreased intrinsic ATPase activity. Arg403-->Gln mutation greatly decreased actin translocating activity (27% of wild type) with a 3.3-fold increased dissociation constant for actin, while intrinsic ATPase activity was unchanged. Val606-->Met mutation only mildly affected the actin translocating activity as well as ATPase activity of myosin. The degree of deterioration by each mutation was closely correlated with the prognosis of the affected kindreds, indicating that myosin dysfunction caused by the point mutations is responsible for the pathogenesis of the disease. Structure/function relationship of myosin is discussed.

Full Text

The Full Text of this article is available as a PDF (384K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Maron BJ, Bonow RO, Cannon RO, 3rd, Leon MB, Epstein SE. Hypertrophic cardiomyopathy. Interrelations of clinical manifestations, pathophysiology, and therapy (2). N Engl J Med. 1987 Apr 2;316(14):844–852. [PubMed]
  • Clark CE, Henry WL, Epstein SE. Familial prevalence and genetic transmission of idiopathic hypertrophic subaortic stenosis. N Engl J Med. 1973 Oct 4;289(14):709–714. [PubMed]
  • Geisterfer-Lowrance AA, Kass S, Tanigawa G, Vosberg HP, McKenna W, Seidman CE, Seidman JG. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell. 1990 Sep 7;62(5):999–1006. [PubMed]
  • Schwartz K, Carrier L, Guicheney P, Komajda M. Molecular basis of familial cardiomyopathies. Circulation. 1995 Jan 15;91(2):532–540. [PubMed]
  • Marian AJ, Roberts R. Recent advances in the molecular genetics of hypertrophic cardiomyopathy. Circulation. 1995 Sep 1;92(5):1336–1347. [PubMed]
  • Watkins H, Rosenzweig A, Hwang DS, Levi T, McKenna W, Seidman CE, Seidman JG. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N Engl J Med. 1992 Apr 23;326(17):1108–1114. [PubMed]
  • Epstein ND, Cohn GM, Cyran F, Fananapazir L. Differences in clinical expression of hypertrophic cardiomyopathy associated with two distinct mutations in the beta-myosin heavy chain gene. A 908Leu----Val mutation and a 403Arg----Gln mutation. Circulation. 1992 Aug;86(2):345–352. [PubMed]
  • Anan R, Greve G, Thierfelder L, Watkins H, McKenna WJ, Solomon S, Vecchio C, Shono H, Nakao S, Tanaka H, et al. Prognostic implications of novel beta cardiac myosin heavy chain gene mutations that cause familial hypertrophic cardiomyopathy. J Clin Invest. 1994 Jan;93(1):280–285. [PMC free article] [PubMed]
  • Fananapazir L, Epstein ND. Genotype-phenotype correlations in hypertrophic cardiomyopathy. Insights provided by comparisons of kindreds with distinct and identical beta-myosin heavy chain gene mutations. Circulation. 1994 Jan;89(1):22–32. [PubMed]
  • Cuda G, Fananapazir L, Zhu WS, Sellers JR, Epstein ND. Skeletal muscle expression and abnormal function of beta-myosin in hypertrophic cardiomyopathy. J Clin Invest. 1993 Jun;91(6):2861–2865. [PMC free article] [PubMed]
  • Sweeney HL, Straceski AJ, Leinwand LA, Tikunov BA, Faust L. Heterologous expression of a cardiomyopathic myosin that is defective in its actin interaction. J Biol Chem. 1994 Jan 21;269(3):1603–1605. [PubMed]
  • Kurabayashi M, Tsuchimochi H, Komuro I, Takaku F, Yazaki Y. Molecular cloning and characterization of human cardiac alpha- and beta-form myosin heavy chain complementary DNA clones. Regulation of expression during development and pressure overload in human atrium. J Clin Invest. 1988 Aug;82(2):524–531. [PMC free article] [PubMed]
  • Schwartz K, Lompre AM, Bouveret P, Wisnewsky C, Whalen RG. Comparisons of rat cardiac myosins at fetal stages in young animals and in hypothyroid adults. J Biol Chem. 1982 Dec 10;257(23):14412–14418. [PubMed]
  • Sata M, Sugiura S, Yamashita H, Momomura S, Serizawa T. Dynamic interaction between cardiac myosin isoforms modifies velocity of actomyosin sliding in vitro. Circ Res. 1993 Oct;73(4):696–704. [PubMed]
  • Harris DE, Work SS, Wright RK, Alpert NR, Warshaw DM. Smooth, cardiac and skeletal muscle myosin force and motion generation assessed by cross-bridge mechanical interactions in vitro. J Muscle Res Cell Motil. 1994 Feb;15(1):11–19. [PubMed]
  • VanBuren P, Harris DE, Alpert NR, Warshaw DM. Cardiac V1 and V3 myosins differ in their hydrolytic and mechanical activities in vitro. Circ Res. 1995 Aug;77(2):439–444. [PubMed]
  • McNally EM, Kraft R, Bravo-Zehnder M, Taylor DA, Leinwand LA. Full-length rat alpha and beta cardiac myosin heavy chain sequences. Comparisons suggest a molecular basis for functional differences. J Mol Biol. 1989 Dec 5;210(3):665–671. [PubMed]
  • Weeds AG, Taylor RS. Separation of subfragment-1 isoenzymes from rabbit skeletal muscle myosin. Nature. 1975 Sep 4;257(5521):54–56. [PubMed]
  • Spudich JA, Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed]
  • Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. [PubMed]
  • Jaenicke T, Diederich KW, Haas W, Schleich J, Lichter P, Pfordt M, Bach A, Vosberg HP. The complete sequence of the human beta-myosin heavy chain gene and a comparative analysis of its product. Genomics. 1990 Oct;8(2):194–206. [PubMed]
  • Liew CC, Sole MJ, Yamauchi-Takihara K, Kellam B, Anderson DH, Lin LP, Liew JC. Complete sequence and organization of the human cardiac beta-myosin heavy chain gene. Nucleic Acids Res. 1990 Jun 25;18(12):3647–3651. [PMC free article] [PubMed]
  • Kelley CA, Takahashi M, Yu JH, Adelstein RS. An insert of seven amino acids confers functional differences between smooth muscle myosins from the intestines and vasculature. J Biol Chem. 1993 Jun 15;268(17):12848–12854. [PubMed]
  • Kurabayashi M, Komuro I, Tsuchimochi H, Takaku F, Yazaki Y. Molecular cloning and characterization of human atrial and ventricular myosin alkali light chain cDNA clones. J Biol Chem. 1988 Sep 25;263(27):13930–13936. [PubMed]
  • Dalla Libera L, Hoffmann E, Floroff M, Jackowski G. Isolation and nucleotide sequence of the cDNA encoding human ventricular myosin light chain 2. Nucleic Acids Res. 1989 Mar 25;17(6):2360–2360. [PMC free article] [PubMed]
  • Sata M, Matsuura M, Ikebe M. Characterization of the motor and enzymatic properties of smooth muscle long S1 and short HMM: role of the two-headed structure on the activity and regulation of the myosin motor. Biochemistry. 1996 Aug 27;35(34):11113–11118. [PubMed]
  • Highashihara M, Frado LL, Craig R, Ikebe M. Inhibition of conformational change in smooth muscle myosin by a monoclonal antibody against the 17-kDa light chain. J Biol Chem. 1989 Mar 25;264(9):5218–5225. [PubMed]
  • Persechini A, Kamm KE, Stull JT. Different phosphorylated forms of myosin in contracting tracheal smooth muscle. J Biol Chem. 1986 May 15;261(14):6293–6299. [PubMed]
  • Ikebe M, Hartshorne DJ. Proteolysis of smooth muscle myosin by Staphylococcus aureus protease: preparation of heavy meromyosin and subfragment 1 with intact 20 000-dalton light chains. Biochemistry. 1985 Apr 23;24(9):2380–2387. [PubMed]
  • Tsuchimochi H, Sugi M, Kuro-o M, Ueda S, Takaku F, Furuta S, Shirai T, Yazaki Y. Isozymic changes in myosin of human atrial myocardium induced by overload. Immunohistochemical study using monoclonal antibodies. J Clin Invest. 1984 Aug;74(2):662–665. [PMC free article] [PubMed]
  • Margossian SS. Reversible dissociation of dog cardiac myosin regulatory light chain 2 and its influence on ATP hydrolysis. J Biol Chem. 1985 Nov 5;260(25):13747–13754. [PubMed]
  • Stein LA, White MP. Biochemical kinetics of porcine cardiac subfragment-1. Circ Res. 1987 Jan;60(1):39–49. [PubMed]
  • Onishi H, Morales MF, Katoh K, Fujiwara K. The putative actin-binding role of hydrophobic residues Trp546 and Phe547 in chicken gizzard heavy meromyosin. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):11965–11969. [PMC free article] [PubMed]
  • Rayment I, Rypniewski WR, Schmidt-Bäse K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. [PubMed]
  • Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligan RA. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2;261(5117):58–65. [PubMed]
  • Rayment I, Holden HM, Sellers JR, Fananapazir L, Epstein ND. Structural interpretation of the mutations in the beta-cardiac myosin that have been implicated in familial hypertrophic cardiomyopathy. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3864–3868. [PMC free article] [PubMed]
  • Fisher AJ, Smith CA, Thoden JB, Smith R, Sutoh K, Holden HM, Rayment I. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. Biochemistry. 1995 Jul 18;34(28):8960–8972. [PubMed]
  • Smith CA, Rayment I. X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution. Biochemistry. 1996 Apr 30;35(17):5404–5417. [PubMed]
  • Eisenberg E, Hill TL. Muscle contraction and free energy transduction in biological systems. Science. 1985 Mar 1;227(4690):999–1006. [PubMed]
  • Geisterfer-Lowrance AA, Christe M, Conner DA, Ingwall JS, Schoen FJ, Seidman CE, Seidman JG. A mouse model of familial hypertrophic cardiomyopathy. Science. 1996 May 3;272(5262):731–734. [PubMed]
  • Lutz RA, Bull C, Rodbard D. Computer analysis of enzyme-substrate-inhibitor kinetic data with automatic model selection using IBM-PC compatible microcomputers. Enzyme. 1986;36(3):197–206. [PubMed]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...