• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jcinvestThe Journal of Clinical InvestigationCurrent IssueArchiveSubscriptionAbout the Journal
J Clin Invest. Oct 1, 1996; 98(7): 1575–1584.
PMCID: PMC507590

Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a.


The NH2-terminal domain of sterol-regulatory element binding protein-1a (SREBP-1a) activates transcription of genes encoding enzymes of cholesterol and fatty acid biosynthesis in cultured cells. This domain is synthesized as part of a membrane-bound precursor that is attached to the nuclear envelope and endoplasmic reticulum. In sterol-depleted cells a two-step proteolytic process releases this NH2-terminal domain, which enters the nucleus and activates transcription. Proteolysis is suppressed by sterols, thereby suppressing transcription. In the current experiments we produce transgenic mice that overexpress a truncated version of human SREBP-1a that includes the NH2-terminal domain but lacks the membrane attachment site. This protein enters the nucleus without a requirement for proteolysis, and therefore it cannot be down-regulated. Expression was driven by the phosphoenolpyruvate carboxykinase (PEPCK) promoter, which gives high level expression in liver. When placed on a low carbohydrate/high protein diet to induce the PEPCK promoter, the transgenic mice developed progressive and massive enlargement of the liver, owing to the engorgement of hepatocytes with cholesterol and triglycerides. The mRNAs encoding 3-hydroxy-3-methylglutaryl CoA (HMG CoA) synthase, HMG CoA reductase, squalene synthase, acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase-1 were all elevated markedly, as was the LDL receptor mRNA. The rates of cholesterol and fatty acid synthesis in liver were elevated 5- and 25-fold, respectively. Remarkably, plasma lipid levels were not elevated. The amount of white adipose tissue decreased progressively as the liver enlarged. These studies indicate that the NH2-terminal domain of SREBP-1a can produce major effects on lipid synthesis and storage in the liver.

Full Text

The Full Text of this article is available as a PDF (3.2M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • GOULD RG. Lipid metabolism and atherosclerosis. Am J Med. 1951 Aug;11(2):209–227. [PubMed]
  • GOULD RG, TAYLOR CB, HAGERMAN JS, WARNER I, CAMPBELL DJ. Cholesterol metabolism. I. Effect of dietary cholesterol on the synthesis of cholesterol in dog tissue in vitro. J Biol Chem. 1953 Apr;201(2):519–528. [PubMed]
  • BUCHER NL, OVERATH P, LYNEN F. beta-Hydroxy-beta-methyl-glutaryl coenzyme A reductase, cleavage and condensing enzymes in relation to cholesterol formation in rat liver. Biochim Biophys Acta. 1960 Jun 3;40:491–501. [PubMed]
  • Siperstein MD, Fagan VM. Feedback control of mevalonate synthesis by dietary cholesterol. J Biol Chem. 1966 Feb 10;241(3):602–609. [PubMed]
  • Ishitani K, Niitsu Y, Listowsky I. Characterization of the different polypeptide components and analysis of subunit assembly in ferritin. J Biol Chem. 1975 Apr 25;250(8):3124–3128. [PubMed]
  • Clarke CF, Tanaka RD, Svenson K, Wamsley M, Fogelman AM, Edwards PA. Molecular cloning and sequence of a cholesterol-repressible enzyme related to prenyltransferase in the isoprene biosynthetic pathway. Mol Cell Biol. 1987 Sep;7(9):3138–3146. [PMC free article] [PubMed]
  • Gould RG, Swyryd EA. Sites of control of hepatic cholesterol biosynthesis. J Lipid Res. 1966 Sep;7(5):698–707. [PubMed]
  • Shechter I, Klinger E, Rucker ML, Engstrom RG, Spirito JA, Islam MA, Boettcher BR, Weinstein DB. Solubilization, purification, and characterization of a truncated form of rat hepatic squalene synthetase. J Biol Chem. 1992 Apr 25;267(12):8628–8635. [PubMed]
  • Horton JD, Cuthbert JA, Spady DK. Regulation of hepatic 7 alpha-hydroxylase expression and response to dietary cholesterol in the rat and hamster. J Biol Chem. 1995 Mar 10;270(10):5381–5387. [PubMed]
  • Sorci-Thomas M, Wilson MD, Johnson FL, Williams DL, Rudel LL. Studies on the expression of genes encoding apolipoproteins B100 and B48 and the low density lipoprotein receptor in nonhuman primates. Comparison of dietary fat and cholesterol. J Biol Chem. 1989 May 25;264(15):9039–9045. [PubMed]
  • Wang X, Sato R, Brown MS, Hua X, Goldstein JL. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell. 1994 Apr 8;77(1):53–62. [PubMed]
  • Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, Goldstein JL, Brown MS. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell. 1993 Oct 8;75(1):187–197. [PubMed]
  • Hua X, Yokoyama C, Wu J, Briggs MR, Brown MS, Goldstein JL, Wang X. SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11603–11607. [PMC free article] [PubMed]
  • Hua X, Sakai J, Ho YK, Goldstein JL, Brown MS. Hairpin orientation of sterol regulatory element-binding protein-2 in cell membranes as determined by protease protection. J Biol Chem. 1995 Dec 8;270(49):29422–29427. [PubMed]
  • Hua X, Sakai J, Brown MS, Goldstein JL. Regulated cleavage of sterol regulatory element binding proteins requires sequences on both sides of the endoplasmic reticulum membrane. J Biol Chem. 1996 Apr 26;271(17):10379–10384. [PubMed]
  • Sakai J, Duncan EA, Rawson RB, Hua X, Brown MS, Goldstein JL. Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell. 1996 Jun 28;85(7):1037–1046. [PubMed]
  • Sato R, Yang J, Wang X, Evans MJ, Ho YK, Goldstein JL, Brown MS. Assignment of the membrane attachment, DNA binding, and transcriptional activation domains of sterol regulatory element-binding protein-1 (SREBP-1). J Biol Chem. 1994 Jun 24;269(25):17267–17273. [PubMed]
  • Yang J, Brown MS, Ho YK, Goldstein JL. Three different rearrangements in a single intron truncate sterol regulatory element binding protein-2 and produce sterol-resistant phenotype in three cell lines. Role of introns in protein evolution. J Biol Chem. 1995 May 19;270(20):12152–12161. [PubMed]
  • Yang J, Sato R, Goldstein JL, Brown MS. Sterol-resistant transcription in CHO cells caused by gene rearrangement that truncates SREBP-2. Genes Dev. 1994 Aug 15;8(16):1910–1919. [PubMed]
  • Wang X, Briggs MR, Hua X, Yokoyama C, Goldstein JL, Brown MS. Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. II. Purification and characterization. J Biol Chem. 1993 Jul 5;268(19):14497–14504. [PubMed]
  • Ericsson J, Jackson SM, Lee BC, Edwards PA. Sterol regulatory element binding protein binds to a cis element in the promoter of the farnesyl diphosphate synthase gene. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):945–950. [PMC free article] [PubMed]
  • Guan G, Jiang G, Koch RL, Shechter I. Molecular cloning and functional analysis of the promoter of the human squalene synthase gene. J Biol Chem. 1995 Sep 15;270(37):21958–21965. [PubMed]
  • Vallett SM, Sanchez HB, Rosenfeld JM, Osborne TF. A direct role for sterol regulatory element binding protein in activation of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene. J Biol Chem. 1996 May 24;271(21):12247–12253. [PubMed]
  • Lopez JM, Bennett MK, Sanchez HB, Rosenfeld JM, Osborne TF. Sterol regulation of acetyl coenzyme A carboxylase: a mechanism for coordinate control of cellular lipid. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1049–1053. [PMC free article] [PubMed]
  • Bennett MK, Lopez JM, Sanchez HB, Osborne TF. Sterol regulation of fatty acid synthase promoter. Coordinate feedback regulation of two major lipid pathways. J Biol Chem. 1995 Oct 27;270(43):25578–25583. [PubMed]
  • Hua X, Wu J, Goldstein JL, Brown MS, Hobbs HH. Structure of the human gene encoding sterol regulatory element binding protein-1 (SREBF1) and localization of SREBF1 and SREBF2 to chromosomes 17p11.2 and 22q13. Genomics. 1995 Feb 10;25(3):667–673. [PubMed]
  • Sheng Z, Otani H, Brown MS, Goldstein JL. Independent regulation of sterol regulatory element-binding proteins 1 and 2 in hamster liver. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):935–938. [PMC free article] [PubMed]
  • Yokode M, Hammer RE, Ishibashi S, Brown MS, Goldstein JL. Diet-induced hypercholesterolemia in mice: prevention by overexpression of LDL receptors. Science. 1990 Nov 30;250(4985):1273–1275. [PubMed]
  • Bucolo G, David H. Quantitative determination of serum triglycerides by the use of enzymes. Clin Chem. 1973 May;19(5):476–482. [PubMed]
  • Short MK, Clouthier DE, Schaefer IM, Hammer RE, Magnuson MA, Beale EG. Tissue-specific, developmental, hormonal, and dietary regulation of rat phosphoenolpyruvate carboxykinase-human growth hormone fusion genes in transgenic mice. Mol Cell Biol. 1992 Mar;12(3):1007–1020. [PMC free article] [PubMed]
  • Hofmann SL, Russell DW, Brown MS, Goldstein JL, Hammer RE. Overexpression of low density lipoprotein (LDL) receptor eliminates LDL from plasma in transgenic mice. Science. 1988 Mar 11;239(4845):1277–1281. [PubMed]
  • Chen CW, Thomas CA., Jr Recovery of DNA segments from agarose gels. Anal Biochem. 1980 Jan 15;101(2):339–341. [PubMed]
  • Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest. 1993 Aug;92(2):883–893. [PMC free article] [PubMed]
  • Ishibashi S, Schwarz M, Frykman PK, Herz J, Russell DW. Disruption of cholesterol 7alpha-hydroxylase gene in mice. I. Postnatal lethality reversed by bile acid and vitamin supplementation. J Biol Chem. 1996 Jul 26;271(30):18017–18023. [PubMed]
  • Chen WJ, Andres DA, Goldstein JL, Russell DW, Brown MS. cDNA cloning and expression of the peptide-binding beta subunit of rat p21ras farnesyltransferase, the counterpart of yeast DPR1/RAM1. Cell. 1991 Jul 26;66(2):327–334. [PubMed]
  • Kirchgessner TG, Svenson KL, Lusis AJ, Schotz MC. The sequence of cDNA encoding lipoprotein lipase. A member of a lipase gene family. J Biol Chem. 1987 Jun 25;262(18):8463–8466. [PubMed]
  • Tokunaga K, Taniguchi H, Yoda K, Shimizu M, Sakiyama S. Nucleotide sequence of a full-length cDNA for mouse cytoskeletal beta-actin mRNA. Nucleic Acids Res. 1986 Mar 25;14(6):2829–2829. [PMC free article] [PubMed]
  • Beisiegel U, Schneider WJ, Goldstein JL, Anderson RG, Brown MS. Monoclonal antibodies to the low density lipoprotein receptor as probes for study of receptor-mediated endocytosis and the genetics of familial hypercholesterolemia. J Biol Chem. 1981 Nov 25;256(22):11923–11931. [PubMed]
  • Osono Y, Woollett LA, Herz J, Dietschy JM. Role of the low density lipoprotein receptor in the flux of cholesterol through the plasma and across the tissues of the mouse. J Clin Invest. 1995 Mar;95(3):1124–1132. [PMC free article] [PubMed]
  • Dietschy JM, Spady DK. Measurement of rates of cholesterol synthesis using tritiated water. J Lipid Res. 1984 Dec 15;25(13):1469–1476. [PubMed]
  • Lowenstein JM, Brunengraber H, Wadke M. Measurement of rates of lipogenesis with deuterated and tritiated water. Methods Enzymol. 1975;35:279–287. [PubMed]
  • Spady DK, Dietschy JM. Sterol synthesis in vivo in 18 tissues of the squirrel monkey, guinea pig, rabbit, hamster, and rat. J Lipid Res. 1983 Mar;24(3):303–315. [PubMed]
  • Rokosz LL, Boulton DA, Butkiewicz EA, Sanyal G, Cueto MA, Lachance PA, Hermes JD. Human cytoplasmic 3-hydroxy-3-methylglutaryl coenzyme A synthase: expression, purification, and characterization of recombinant wild-type and Cys129 mutant enzymes. Arch Biochem Biophys. 1994 Jul;312(1):1–13. [PubMed]
  • Gil G, Goldstein JL, Slaughter CA, Brown MS. Cytoplasmic 3-hydroxy-3-methylglutaryl coenzyme A synthase from the hamster. I. Isolation and sequencing of a full-length cDNA. J Biol Chem. 1986 Mar 15;261(8):3710–3716. [PubMed]
  • Chin DJ, Gil G, Russell DW, Liscum L, Luskey KL, Basu SK, Okayama H, Berg P, Goldstein JL, Brown MS. Nucleotide sequence of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, a glycoprotein of endoplasmic reticulum. Nature. 1984 Apr 12;308(5960):613–617. [PubMed]
  • Amy CM, Witkowski A, Naggert J, Williams B, Randhawa Z, Smith S. Molecular cloning and sequencing of cDNAs encoding the entire rat fatty acid synthase. Proc Natl Acad Sci U S A. 1989 May;86(9):3114–3118. [PMC free article] [PubMed]
  • Yuan ZY, Liu W, Hammes GG. Molecular cloning and sequencing of DNA complementary to chicken liver fatty acid synthase mRNA. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6328–6331. [PMC free article] [PubMed]
  • Ha J, Daniel S, Kong IS, Park CK, Tae HJ, Kim KH. Cloning of human acetyl-CoA carboxylase cDNA. Eur J Biochem. 1994 Jan 15;219(1-2):297–306. [PubMed]
  • López-Casillas F, Bai DH, Luo XC, Kong IS, Hermodson MA, Kim KH. Structure of the coding sequence and primary amino acid sequence of acetyl-coenzyme A carboxylase. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5784–5788. [PMC free article] [PubMed]
  • Inoue T, Osumi T, Hata S. Molecular cloning and functional expression of a cDNA for mouse squalene synthase. Biochim Biophys Acta. 1995 Jan 2;1260(1):49–54. [PubMed]
  • Ntambi JM, Buhrow SA, Kaestner KH, Christy RJ, Sibley E, Kelly TJ, Jr, Lane MD. Differentiation-induced gene expression in 3T3-L1 preadipocytes. Characterization of a differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem. 1988 Nov 25;263(33):17291–17300. [PubMed]
  • Poncin JE, Martial JA, Gielen JE. Cloning and structure analysis of the rat apolipoprotein A-I cDNA. Eur J Biochem. 1984 May 2;140(3):493–498. [PubMed]
  • Shoulders CC, Kornblihtt AR, Munro BS, Baralle FE. Gene structure of human apolipoprotein A1. Nucleic Acids Res. 1983 May 11;11(9):2827–2837. [PMC free article] [PubMed]
  • Matsumoto A, Aburatani H, Shibasaki Y, Kodama T, Takaku F, Itakura H. Cloning and regulation of rat apolipoprotein B mRNA. Biochem Biophys Res Commun. 1987 Jan 15;142(1):92–99. [PubMed]
  • Yang CY, Chen SH, Gianturco SH, Bradley WA, Sparrow JT, Tanimura M, Li WH, Sparrow DA, DeLoof H, Rosseneu M, et al. Sequence, structure, receptor-binding domains and internal repeats of human apolipoprotein B-100. Nature. 1986 Oct 23;323(6090):738–742. [PubMed]
  • Rajavashisth TB, Kaptein JS, Reue KL, Lusis AJ. Evolution of apolipoprotein E: mouse sequence and evidence for an 11-nucleotide ancestral unit. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8085–8089. [PMC free article] [PubMed]
  • Ginsberg HN. Synthesis and secretion of apolipoprotein B from cultured liver cells. Curr Opin Lipidol. 1995 Oct;6(5):275–280. [PubMed]
  • Reynolds GA, Goldstein JL, Brown MS. Multiple mRNAs for 3-hydroxy-3-methylglutaryl coenzyme A reductase determined by multiple transcription initiation sites and intron splicing sites in the 5'-untranslated region. J Biol Chem. 1985 Aug 25;260(18):10369–10377. [PubMed]
  • SIPERSTEIN MD, GUEST MJ. Studies on the site of the feedback control of cholesterol synthesis. J Clin Invest. 1960 Apr;39:642–652. [PMC free article] [PubMed]
  • Kim JB, Spiegelman BM. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 1996 May 1;10(9):1096–1107. [PubMed]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...