• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jcinvestThe Journal of Clinical InvestigationCurrent IssueArchiveSubscriptionAbout the Journal
J Clin Invest. May 1, 1996; 97(9): 2011–2019.
PMCID: PMC507274

The new collagenase, collagenase-3, is expressed and synthesized by human chondrocytes but not by synoviocytes. A role in osteoarthritis.

Abstract

Recently, a new human collagenase, collagenase-3 has been identified. Since collagen changes are of particular importance in cartilage degeneration, we investigated if collagenase-3 plays a role in osteoarthritis (OA). Reverse transcriptase-PCR analysis revealed that in articular tissues collagenase-3 was expressed by the chondrocytes but not by the synoviocytes. Northern blot analysis of the chondrocyte mRNA revealed the presence of two major gene transcripts of 3.0 and 2.5 kb, and a third one of 2.2 kb was occasionally present. Compared to normal, OA showed a significantly higher (3.0 kb, P < or = 0.05; 2.5 kb, P < or = 0.03) level of collagenase-3 mRNA expression. Collagenase-3 had a higher catalytic velocity tate (about fivefold) than collagenase-1 on type II collagen. With the use of two specific antibodies, we showed that human chondrocytes had the ability to produce collagenase-3 as a proenzyme and as a glycosylated doublet. The chondrocyte collagenase-3 protein is produced in a significantly higher (P < or = 0.04) level in OA (approximately 9.5-fold) than in normal. The synthesis and expression of this new collagenase could also be modulated by two proinflammatory cytokines, IL-1 beta and TNF-alpha, in a time- and dose-dependent manner. This study provides novel and interesting data on collagenase-3 expression and synthesis in human cartilage cells and suggest its involvement in human OA cartilage patho-physiology.

Full Text

The Full Text of this article is available as a PDF (331K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Miller EJ, Gay S. The collagens: an overview and update. Methods Enzymol. 1987;144:3–41. [PubMed]
  • Poole CA, Honda T, Skinner SJ, Schofield JR, Hyde KF, Shinkai H. Chondrons from articular cartilage (II): Analysis of the glycosaminoglycans in the cellular microenvironment of isolated canine chondrons. Connect Tissue Res. 1990;24(3-4):319–330. [PubMed]
  • Mayne R. Cartilage collagens. What is their function, and are they involved in articular disease? Arthritis Rheum. 1989 Mar;32(3):241–246. [PubMed]
  • Ayad S, Marriott A, Morgan K, Grant ME. Bovine cartilage types VI and IX collagens. Characterization of their forms in vivo. Biochem J. 1989 Sep 15;262(3):753–761. [PMC free article] [PubMed]
  • Eyre DR, Wu JJ, Apone S. A growing family of collagens in articular cartilage: identification of 5 genetically distinct types. J Rheumatol. 1987 May;14(Spec No):25–27. [PubMed]
  • Kempson GE, Muir H, Pollard C, Tuke M. The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans. Biochim Biophys Acta. 1973 Feb 28;297(2):456–472. [PubMed]
  • Kempson GE, Tuke MA, Dingle JT, Barrett AJ, Horsfield PH. The effects of proteolytic enzymes on the mechanical properties of adult human articular cartilage. Biochim Biophys Acta. 1976 May 28;428(3):741–760. [PubMed]
  • Dodge GR, Poole AR. Immunohistochemical detection and immunochemical analysis of type II collagen degradation in human normal, rheumatoid, and osteoarthritic articular cartilages and in explants of bovine articular cartilage cultured with interleukin 1. J Clin Invest. 1989 Feb;83(2):647–661. [PMC free article] [PubMed]
  • Hollander AP, Heathfield TF, Webber C, Iwata Y, Bourne R, Rorabeck C, Poole AR. Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J Clin Invest. 1994 Apr;93(4):1722–1732. [PMC free article] [PubMed]
  • Pelletier JP, Martel-Pelletier J, Altman RD, Ghandur-Mnaymneh L, Howell DS, Woessner JF., Jr Collagenolytic activity and collagen matrix breakdown of the articular cartilage in the Pond-Nuki dog model of osteoarthritis. Arthritis Rheum. 1983 Jul;26(7):866–874. [PubMed]
  • Dean DD. Proteinase-mediated cartilage degradation in osteoarthritis. Semin Arthritis Rheum. 1991 Jun;20(6 Suppl 2):2–11. [PubMed]
  • Pelletier JP, Roughley PJ, DiBattista JA, McCollum R, Martel-Pelletier J. Are cytokines involved in osteoarthritic pathophysiology? Semin Arthritis Rheum. 1991 Jun;20(6 Suppl 2):12–25. [PubMed]
  • Khokha R, Denhardt DT. Matrix metalloproteinases and tissue inhibitor of metalloproteinases: a review of their role in tumorigenesis and tissue invasion. Invasion Metastasis. 1989;9(6):391–405. [PubMed]
  • Hofmann H, Fietzek PP, Kühn K. The role of polar and hydrophobic interactions for the molecular packing of type I collagen: a three-dimensional evaluation of the amino acid sequence. J Mol Biol. 1978 Oct 25;125(2):137–165. [PubMed]
  • Miller EJ, Harris ED, Jr, Chung E, Finch JE, Jr, McCroskery PA, Butler WT. Cleavage of Type II and III collagens with mammalian collagenase: site of cleavage and primary structure at the NH2-terminal portion of the smaller fragment released from both collagens. Biochemistry. 1976 Feb 24;15(4):787–792. [PubMed]
  • Dixit SN, Mainardi CL, Seyer JM, Kang AH. Covalent structure of collagen: amino acid sequence of alpha 2-CB5 of chick skin collagen containing the animal collagenase cleavage site. Biochemistry. 1979 Nov 27;18(24):5416–5422. [PubMed]
  • Woessner JF., Jr Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991 May;5(8):2145–2154. [PubMed]
  • Matrisian LM. Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet. 1990 Apr;6(4):121–125. [PubMed]
  • Gunja-Smith Z, Nagase H, Woessner JF., Jr Purification of the neutral proteoglycan-degrading metalloproteinase from human articular cartilage tissue and its identification as stromelysin matrix metalloproteinase-3. Biochem J. 1989 Feb 15;258(1):115–119. [PMC free article] [PubMed]
  • Aimes RT, Quigley JP. Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J Biol Chem. 1995 Mar 17;270(11):5872–5876. [PubMed]
  • Wu JJ, Lark MW, Chun LE, Eyre DR. Sites of stromelysin cleavage in collagen types II, IX, X, and XI of cartilage. J Biol Chem. 1991 Mar 25;266(9):5625–5628. [PubMed]
  • Freije JM, Díez-Itza I, Balbín M, Sánchez LM, Blasco R, Tolivia J, López-Otín C. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J Biol Chem. 1994 Jun 17;269(24):16766–16773. [PubMed]
  • Pendás AM, Matilla T, Estivill X, López-Otín C. The human collagenase-3 (CLG3) gene is located on chromosome 11q22.3 clustered to other members of the matrix metalloproteinase gene family. Genomics. 1995 Apr 10;26(3):615–618. [PubMed]
  • Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, Christy W, Cooke TD, Greenwald R, Hochberg M, et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 1986 Aug;29(8):1039–1049. [PubMed]
  • Martel-Pelletier J, McCollum R, Fujimoto N, Obata K, Cloutier JM, Pelletier JP. Excess of metalloproteases over tissue inhibitor of metalloprotease may contribute to cartilage degradation in osteoarthritis and rheumatoid arthritis. Lab Invest. 1994 Jun;70(6):807–815. [PubMed]
  • Sadouk MB, Pelletier JP, Tardif G, Kiansa K, Cloutier JM, Martel-Pelletier J. Human synovial fibroblasts coexpress IL-1 receptor type I and type II mRNA. The increased level of the IL-1 receptor in osteoarthritic cells is related to an increased level of the type I receptor. Lab Invest. 1995 Sep;73(3):347–355. [PubMed]
  • Fernandes JC, Martel-Pelletier J, Otterness IG, Lopez-Anaya A, Mineau F, Tardif G, Pelletier JP. Effects of tenidap on canine experimental osteoarthritis. I. Morphologic and metalloprotease analysis. Arthritis Rheum. 1995 Sep;38(9):1290–1303. [PubMed]
  • Schaffner W, Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. [PubMed]
  • Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. [PMC free article] [PubMed]
  • Welgus HG, Jeffrey JJ, Eisen AZ. Human skin fibroblast collagenase. Assessment of activation energy and deuterium isotope effect with collagenous substrates. J Biol Chem. 1981 Sep 25;256(18):9516–9521. [PubMed]
  • Welgus HG, Kobayashi DK, Jeffrey JJ. The collagen substrate specificity of rat uterus collagenase. J Biol Chem. 1983 Dec 10;258(23):14162–14165. [PubMed]
  • Fini ME, Karmilowicz MJ, Ruby PL, Beeman AM, Borges KA, Brinckerhoff CE. Cloning of a complementary DNA for rabbit proactivator. A metalloproteinase that activates synovial cell collagenase, shares homology with stromelysin and transin, and is coordinately regulated with collagenase. Arthritis Rheum. 1987 Nov;30(11):1254–1264. [PubMed]
  • Harris ED, Jr, Krane SM. Collagenases (third of three parts). N Engl J Med. 1974 Sep 26;291(13):652–661. [PubMed]
  • Dayer JM, Demczuk S. Cytokines and other mediators in rheumatoid arthritis. Springer Semin Immunopathol. 1984;7(4):387–413. [PubMed]
  • Okada Y, Takeuchi N, Tomita K, Nakanishi I, Nagase H. Immunolocalization of matrix metalloproteinase 3 (stromelysin) in rheumatoid synovioblasts (B cells): correlation with rheumatoid arthritis. Ann Rheum Dis. 1989 Aug;48(8):645–653. [PMC free article] [PubMed]
  • Okada Y, Shinmei M, Tanaka O, Naka K, Kimura A, Nakanishi I, Bayliss MT, Iwata K, Nagase H. Localization of matrix metalloproteinase 3 (stromelysin) in osteoarthritic cartilage and synovium. Lab Invest. 1992 Jun;66(6):680–690. [PubMed]
  • Wilhelm SM, Collier IE, Marmer BL, Eisen AZ, Grant GA, Goldberg GI. SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem. 1989 Oct 15;264(29):17213–17221. [PubMed]
  • Okada Y, Morodomi T, Enghild JJ, Suzuki K, Yasui A, Nakanishi I, Salvesen G, Nagase H. Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties. Eur J Biochem. 1990 Dec 27;194(3):721–730. [PubMed]
  • Okada Y, Tsuchiya H, Shimizu H, Tomita K, Nakanishi I, Sato H, Seiki M, Yamashita K, Hayakawa T. Induction and stimulation of 92-kDa gelatinase/type IV collagenase production in osteosarcoma and fibrosarcoma cell lines by tumor necrosis factor alpha. Biochem Biophys Res Commun. 1990 Sep 14;171(2):610–617. [PubMed]
  • Chen JM, Aimes RT, Ward GR, Youngleib GL, Quigley JP. Isolation and characterization of a 70-kDa metalloprotease (gelatinase) that is elevated in Rous sarcoma virus-transformed chicken embryo fibroblasts. J Biol Chem. 1991 Mar 15;266(8):5113–5121. [PubMed]
  • MacDougall JR, Kerbel RS. Constitutive production of 92-kDa gelatinase B can be suppressed by alterations in cell shape. Exp Cell Res. 1995 Jun;218(2):508–515. [PubMed]
  • Nguyen Q, Mort JS, Roughley PJ. Preferential mRNA expression of prostromelysin relative to procollagenase and in situ localization in human articular cartilage. J Clin Invest. 1992 Apr;89(4):1189–1197. [PMC free article] [PubMed]
  • Wolfe GC, MacNaul KL, Buechel FF, McDonnell J, Hoerrner LA, Lark MW, Moore VL, Hutchinson NI. Differential in vivo expression of collagenase messenger RNA in synovium and cartilage. Quantitative comparison with stromelysin messenger RNA levels in human rheumatoid arthritis and osteoarthritis patients and in two animal models of acute inflammatory arthritis. Arthritis Rheum. 1993 Nov;36(11):1540–1547. [PubMed]
  • O'Connell JP, Willenbrock F, Docherty AJ, Eaton D, Murphy G. Analysis of the role of the COOH-terminal domain in the activation, proteolytic activity, and tissue inhibitor of metalloproteinase interactions of gelatinase B. J Biol Chem. 1994 May 27;269(21):14967–14973. [PubMed]
  • Abramson SR, Conner GE, Nagase H, Neuhaus I, Woessner JF., Jr Characterization of rat uterine matrilysin and its cDNA. Relationship to human pump-1 and activation of procollagenases. J Biol Chem. 1995 Jul 7;270(27):16016–16022. [PubMed]
  • Quinn CO, Scott DK, Brinckerhoff CE, Matrisian LM, Jeffrey JJ, Partridge NC. Rat collagenase. Cloning, amino acid sequence comparison, and parathyroid hormone regulation in osteoblastic cells. J Biol Chem. 1990 Dec 25;265(36):22342–22347. [PubMed]
  • Leco KJ, Khokha R, Pavloff N, Hawkes SP, Edwards DR. Tissue inhibitor of metalloproteinases-3 (TIMP-3) is an extracellular matrix-associated protein with a distinctive pattern of expression in mouse cells and tissues. J Biol Chem. 1994 Mar 25;269(12):9352–9360. [PubMed]
  • Ben-Ze'ev A. Animal cell shape changes and gene expression. Bioessays. 1991 May;13(5):207–212. [PubMed]
  • Newman P, Watt FM. Influence of cytochalasin D-induced changes in cell shape on proteoglycan synthesis by cultured articular chondrocytes. Exp Cell Res. 1988 Oct;178(2):199–210. [PubMed]
  • Watson PA. Function follows form: generation of intracellular signals by cell deformation. FASEB J. 1991 Apr;5(7):2013–2019. [PubMed]
  • Hart GW, Haltiwanger RS, Holt GD, Kelly WG. Glycosylation in the nucleus and cytoplasm. Annu Rev Biochem. 1989;58:841–874. [PubMed]
  • Broquet P, George P, Geoffroy J, Reboul P, Louisot P. Study of O-glycan sialylation in C6 cultured glioma cells: evidence for post-translational regulation of a beta-galactoside alpha 2,3 sialyltransferase activity by N-glycosylation. Biochem Biophys Res Commun. 1991 Aug 15;178(3):1437–1443. [PubMed]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • OMIM
    OMIM
    OMIM record citing PubMed
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links