• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Dec 15, 1992; 89(24): 12003–12007.
PMCID: PMC50686

High-level expression of a heterologous protein in the milk of transgenic swine using the cDNA encoding human protein C.

Abstract

Transgenic pigs were generated that produced human protein C in their milk at up to 1 g/liter. The gene construct was a fusion gene consisting of the cDNA for human protein C inserted into the first exon of the mouse whey acidic protein gene. These results demonstrate that the mouse whey acidic protein gene contains regulatory elements that can direct cDNA expression at high levels in the pig mammary gland. Recombinant human protein C that was produced at about 380 micrograms/ml per hr in transgenic pig milk possessed anticoagulant activity that was equivalent to that of protein C derived from human plasma. These studies provide evidence that gamma-carboxylation can occur at high levels in the mammary gland of a pig.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.4M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Wall RJ, Pursel VG, Shamay A, McKnight RA, Pittius CW, Hennighausen L. High-level synthesis of a heterologous milk protein in the mammary glands of transgenic swine. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1696–1700. [PMC free article] [PubMed]
  • Wright G, Carver A, Cottom D, Reeves D, Scott A, Simons P, Wilmut I, Garner I, Colman A. High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Biotechnology (N Y) 1991 Sep;9(9):830–834. [PubMed]
  • Ebert KM, Selgrath JP, DiTullio P, Denman J, Smith TE, Memon MA, Schindler JE, Monastersky GM, Vitale JA, Gordon K. Transgenic production of a variant of human tissue-type plasminogen activator in goat milk: generation of transgenic goats and analysis of expression. Biotechnology (N Y) 1991 Sep;9(9):835–838. [PubMed]
  • Pittius CW, Hennighausen L, Lee E, Westphal H, Nicols E, Vitale J, Gordon K. A milk protein gene promoter directs the expression of human tissue plasminogen activator cDNA to the mammary gland in transgenic mice. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5874–5878. [PMC free article] [PubMed]
  • Esmon CT. The regulation of natural anticoagulant pathways. Science. 1987 Mar 13;235(4794):1348–1352. [PubMed]
  • Velander WH, Page RL, Morcöl T, Russell CG, Canseco R, Young JM, Drohan WN, Gwazdauskas FC, Wilkins TD, Johnson JL. Production of biologically active human protein C in the milk of transgenic mice. Ann N Y Acad Sci. 1992 Oct 13;665:391–403. [PubMed]
  • Wall RJ, Pursel VG, Hammer RE, Brinster RL. Development of porcine ova that were centrifuged to permit visualization of pronuclei and nuclei. Biol Reprod. 1985 Apr;32(3):645–651. [PubMed]
  • Brinster RL, Chen HY, Trumbauer ME, Yagle MK, Palmiter RD. Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4438–4442. [PMC free article] [PubMed]
  • Campbell SM, Rosen JM, Hennighausen LG, Strech-Jurk U, Sippel AE. Comparison of the whey acidic protein genes of the rat and mouse. Nucleic Acids Res. 1984 Nov 26;12(22):8685–8697. [PMC free article] [PubMed]
  • Saiki RK, Walsh PS, Levenson CH, Erlich HA. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6230–6234. [PMC free article] [PubMed]
  • Puissant C, Houdebine LM. An improvement of the single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Biotechniques. 1990 Feb;8(2):148–149. [PubMed]
  • Stearns DJ, Kurosawa S, Sims PJ, Esmon NL, Esmon CT. The interaction of a Ca2+-dependent monoclonal antibody with the protein C activation peptide region. Evidence for obligatory Ca2+ binding to both antigen and antibody. J Biol Chem. 1988 Jan 15;263(2):826–832. [PubMed]
  • Vinazzer H, Pangraz U. Protein C: comparison of different assays in normal and abnormal plasma samples. Thromb Res. 1987 Apr 1;46(1):1–8. [PubMed]
  • Shamay A, Solinas S, Pursel VG, McKnight RA, Alexander L, Beattie C, Hennighausen L, Wall RJ. Production of the mouse whey acidic protein in transgenic pigs during lactation. J Anim Sci. 1991 Nov;69(11):4552–4562. [PubMed]
  • Zhang L, Castellino FJ. A gamma-carboxyglutamic acid (gamma) variant (gamma 6D, gamma 7D) of human activated protein C displays greatly reduced activity as an anticoagulant. Biochemistry. 1990 Dec 4;29(48):10828–10834. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • MedGen
    MedGen
    Related information in MedGen
  • OMIM
    OMIM
    OMIM record citing PubMed
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...