Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. 1992 Aug 1; 89(15): 6746–6750.

Coregulation of purine and histidine biosynthesis by the transcriptional activators BAS1 and BAS2.


We have found cross-pathway regulation between purine and histidine biosynthesis in yeast. The transcription factors BAS1 and BAS2/PHO2, which are also regulators of the histidine pathway, participate in the regulation of the purine biosynthetic pathway. Analysis of four genes of the purine pathway (ADE1, ADE2, ADE5,7, and ADE8) shows that their expression is repressed by adenine. The maximal basal and induced expression of these purine genes requires the presence of both BAS1 and BAS2. The factor BAS1 has been shown to bind at a site containing the TGACTC hexanucleotide motif in the ADE2 and ADE5,7 promoters. This motif is required for both basal and induced activation of the ADE2 gene by BAS1 and BAS2.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Arndt KT, Styles C, Fink GR. Multiple global regulators control HIS4 transcription in yeast. Science. 1987 Aug 21;237(4817):874–880. [PubMed]
  • Tice-Baldwin K, Fink GR, Arndt KT. BAS1 has a Myb motif and activates HIS4 transcription only in combination with BAS2. Science. 1989 Nov 17;246(4932):931–935. [PubMed]
  • Mösch HU, Scheier B, Lahti R, Mäntsäla P, Braus GH. Transcriptional activation of yeast nucleotide biosynthetic gene ADE4 by GCN4. J Biol Chem. 1991 Oct 25;266(30):20453–20456. [PubMed]
  • Myers AM, Tzagoloff A, Kinney DM, Lusty CJ. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene. 1986;45(3):299–310. [PubMed]
  • Crowley JC, Kaback DB. Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: isolation of the ADE1 gene. J Bacteriol. 1984 Jul;159(1):413–417. [PMC free article] [PubMed]
  • Stotz A, Linder P. The ADE2 gene from Saccharomyces cerevisiae: sequence and new vectors. Gene. 1990 Oct 30;95(1):91–98. [PubMed]
  • Staben C, Rabinowitz JC. Nucleotide sequence of the Saccharomyces cerevisiae ADE3 gene encoding C1-tetrahydrofolate synthase. J Biol Chem. 1986 Apr 5;261(10):4629–4637. [PubMed]
  • Henikoff S. The Saccharomyces cerevisiae ADE5,7 protein is homologous to overlapping Drosophila melanogaster Gart polypeptides. J Mol Biol. 1986 Aug 20;190(4):519–528. [PubMed]
  • White JH, DiMartino JF, Anderson RW, Lusnak K, Hilbert D, Fogel S. A DNA sequence conferring high postmeiotic segregation frequency to heterozygous deletions in Saccharomyces cerevisiae is related to sequences associated with eucaryotic recombination hotspots. Mol Cell Biol. 1988 Mar;8(3):1253–1258. [PMC free article] [PubMed]
  • Nagawa F, Fink GR. The relationship between the "TATA" sequence and transcription initiation sites at the HIS4 gene of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8557–8561. [PMC free article] [PubMed]
  • Miasnikov AN, Plavnik Iu A, Sasnauskas KV, Gedminene GK, Ianulaitis AA. Nukleotidnaia posledovatel'nost' gena ADE 1 drozhzhei Saccharomyces cerevisiae. Bioorg Khim. 1986 Apr;12(4):555–558. [PubMed]
  • Mäntsälä P, Zalkin H. Glutamine nucleotide sequence of Saccharomyces cerevisiae ADE4 encoding phosphoribosylpyrophosphate amidotransferase. J Biol Chem. 1984 Jul 10;259(13):8478–8484. [PubMed]
  • Braus G, Mösch HU, Vogel K, Hinnen A, Hütter R. Interpathway regulation of the TRP4 gene of yeast. EMBO J. 1989 Mar;8(3):939–945. [PMC free article] [PubMed]
  • Gianì S, Manoni M, Breviario D. Cloning and transcriptional analysis of the ADE6 gene of Saccharomyces cerevisiae. Gene. 1991 Oct 30;107(1):149–154. [PubMed]
  • Arndt K, Fink GR. GCN4 protein, a positive transcription factor in yeast, binds general control promoters at all 5' TGACTC 3' sequences. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8516–8520. [PMC free article] [PubMed]
  • Hinnebusch AG. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev. 1988 Jun;52(2):248–273. [PMC free article] [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem chemical compound records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records. Multiple substance records may contribute to the PubChem compound record.
  • Gene
    Gene records that cite the current articles. Citations in Gene are added manually by NCBI or imported from outside public resources.
  • GEO Profiles
    GEO Profiles
    Gene Expression Omnibus (GEO) Profiles of molecular abundance data. The current articles are references on the Gene record associated with the GEO profile.
  • HomoloGene
    HomoloGene clusters of homologous genes and sequences that cite the current articles. These are references on the Gene and sequence records in the HomoloGene entry.
  • MedGen
    Related information in MedGen
  • Pathways + GO
    Pathways + GO
    Pathways and biological systems (BioSystems) that cite the current articles. Citations are from the BioSystems source databases (KEGG and BioCyc).
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...