Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. 1992 Jul 15; 89(14): 6257–6261.

Sensitivity to vanadate and isoforms of subunits A and B distinguish the osteoclast proton pump from other vacuolar H+ ATPases.


Analysis of proton (H+) transport by inside-out vesicles derived from highly purified chicken osteoclast (OC) membranes has revealed the presence of a newly discovered type of vacuolar H+ ATPase (V-ATPase). Unlike vesicles derived from any other cell type or organelle, H+ transport in OC-derived vesicles is sensitive to V-ATPase inhibitors (N-ethylmaleimide and Bafilomycin A1) and vanadate (IC50, 100 microM), an inhibitor previously found to affect only P-type ATPases. The OC H+ ATPase contains several V-like subunits (115, 39, and 16 kDa) but subunits A and B of the catalytic domain of the enzyme differ from that of other V-ATPases. In OCs, subunit A has a mass of 63 kDa instead of the 67-70 kDa expressed in monocytes, macrophages, and kidney microsomes, which contain a vanadate-insensitive H+ ATPase. Moreover, two types of 57- to 60-kDa B subunits are also found: one is expressed predominantly in OCs and the other is expressed in kidney microsomes. The OC H+ pump may therefore constitute a class of H+ ATPase with a unique pharmacology and specific isoforms of two subunits in the catalytic portion of the enzyme. This H+ ATPase is involved in resorption of bone and may be expressed in a cell-specific manner, thereby opening possibilities for therapeutic intervention.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Mellman I, Fuchs R, Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:663–700. [PubMed]
  • Forgac M. Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev. 1989 Jul;69(3):765–796. [PubMed]
  • Hell JW, Maycox PR, Stadler H, Jahn R. Uptake of GABA by rat brain synaptic vesicles isolated by a new procedure. EMBO J. 1988 Oct;7(10):3023–3029. [PMC free article] [PubMed]
  • Maycox PR, Deckwerth T, Hell JW, Jahn R. Glutamate uptake by brain synaptic vesicles. Energy dependence of transport and functional reconstitution in proteoliposomes. J Biol Chem. 1988 Oct 25;263(30):15423–15428. [PubMed]
  • Al-Awqati Q. Proton-translocating ATPases. Annu Rev Cell Biol. 1986;2:179–199. [PubMed]
  • Baron R, Neff L, Louvard D, Courtoy PJ. Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol. 1985 Dec;101(6):2210–2222. [PMC free article] [PubMed]
  • Blair HC, Teitelbaum SL, Ghiselli R, Gluck S. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science. 1989 Aug 25;245(4920):855–857. [PubMed]
  • Nelson N, Taiz L. The evolution of H+-ATPases. Trends Biochem Sci. 1989 Mar;14(3):113–116. [PubMed]
  • Bowman EJ, Siebers A, Altendorf K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7972–7976. [PMC free article] [PubMed]
  • Bekker PJ, Gay CV. Biochemical characterization of an electrogenic vacuolar proton pump in purified chicken osteoclast plasma membrane vesicles. J Bone Miner Res. 1990 Jun;5(6):569–579. [PubMed]
  • Vänänen HK, Karhukorpi EK, Sundquist K, Wallmark B, Roininen I, Hentunen T, Tuukkanen J, Lakkakorpi P. Evidence for the presence of a proton pump of the vacuolar H(+)-ATPase type in the ruffled borders of osteoclasts. J Cell Biol. 1990 Sep;111(3):1305–1311. [PMC free article] [PubMed]
  • Nelson N. Structure and pharmacology of the proton-ATPases. Trends Pharmacol Sci. 1991 Feb;12(2):71–75. [PubMed]
  • Wang ZQ, Gluck S. Isolation and properties of bovine kidney brush border vacuolar H(+)-ATPase. A proton pump with enzymatic and structural differences from kidney microsomal H(+)-ATPase. J Biol Chem. 1990 Dec 15;265(35):21957–21965. [PubMed]
  • Zambonin Zallone A, Teti A, Primavera MV. Isolated osteoclasts in primary culture: first observations on structure and survival in culture media. Anat Embryol (Berl) 1982 Dec;165(3):405–413. [PubMed]
  • Achee FM, Togulga G, Gabay S. Studies of monoamine oxidases: properties of the enzyme in bovine and rabbit brain mitochondria. J Neurochem. 1974 May;22(5):651–661. [PubMed]
  • Fuchs R, Mâle P, Mellman I. Acidification and ion permeabilities of highly purified rat liver endosomes. J Biol Chem. 1989 Feb 5;264(4):2212–2220. [PubMed]
  • Lauter CJ, Solyom A, Trams EG. Comparative studies on enzyme markers of liver plasma membranes. Biochim Biophys Acta. 1972 May 9;266(2):511–523. [PubMed]
  • Varshney GC, Henry J, Kahn A, Phan-Dinh-Tuy F. Tyrosine kinases in normal human blood cells. Platelet but not erythrocyte band 3 tyrosine kinase is p60c-src. FEBS Lett. 1986 Sep 1;205(1):97–103. [PubMed]
  • Wang SY, Moriyama Y, Mandel M, Hulmes JD, Pan YC, Danho W, Nelson H, Nelson N. Cloning of cDNA encoding a 32-kDa protein. An accessory polypeptide of the H+-ATPase from chromaffin granules. J Biol Chem. 1988 Nov 25;263(33):17638–17642. [PubMed]
  • Lai SP, Randall SK, Sze H. Peripheral and integral subunits of the tonoplast H+-ATPase from oat roots. J Biol Chem. 1988 Nov 15;263(32):16731–16737. [PubMed]
  • Bowman EJ, Tenney K, Bowman BJ. Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-1 encoding the 67-kDa subunit reveals homology to other ATPases. J Biol Chem. 1988 Oct 5;263(28):13994–14001. [PubMed]
  • Südhof TC, Fried VA, Stone DK, Johnston PA, Xie XS. Human endomembrane H+ pump strongly resembles the ATP-synthetase of Archaebacteria. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6067–6071. [PMC free article] [PubMed]
  • Billecocq A, Emanuel JR, Levenson R, Baron R. 1 alpha,25-dihydroxyvitamin D3 regulates the expression of carbonic anhydrase II in nonerythroid avian bone marrow cells. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6470–6474. [PMC free article] [PubMed]
  • Gluck S, Caldwell J. Immunoaffinity purification and characterization of vacuolar H+ATPase from bovine kidney. J Biol Chem. 1987 Nov 15;262(32):15780–15789. [PubMed]
  • Schmid S, Fuchs R, Kielian M, Helenius A, Mellman I. Acidification of endosome subpopulations in wild-type Chinese hamster ovary cells and temperature-sensitive acidification-defective mutants. J Cell Biol. 1989 Apr;108(4):1291–1300. [PMC free article] [PubMed]
  • Glazer AN. Light guides. Directional energy transfer in a photosynthetic antenna. J Biol Chem. 1989 Jan 5;264(1):1–4. [PubMed]
  • Brown D, Gluck S, Hartwig J. Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as an H+ATPase. J Cell Biol. 1987 Oct;105(4):1637–1648. [PMC free article] [PubMed]
  • Moriyama Y, Nelson N. Purification and properties of a vanadate- and N-ethylmaleimide-sensitive ATPase from chromaffin granule membranes. J Biol Chem. 1988 Jun 15;263(17):8521–8527. [PubMed]
  • Bowman BJ, Allen R, Wechser MA, Bowman EJ. Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-2 encoding the 57-kDa polypeptide and comparison to vma-1. J Biol Chem. 1988 Oct 5;263(28):14002–14007. [PubMed]
  • Mandala SM, Slayman CW. The amino and carboxyl termini of the Neurospora plasma membrane H+-ATPase are cytoplasmically located. J Biol Chem. 1989 Sep 25;264(27):16276–16281. [PubMed]
  • Fuchs R, Schmid S, Mellman I. A possible role for Na+,K+-ATPase in regulating ATP-dependent endosome acidification. Proc Natl Acad Sci U S A. 1989 Jan;86(2):539–543. [PMC free article] [PubMed]
  • Yamashiro DJ, Fluss SR, Maxfield FR. Acidification of endocytic vesicles by an ATP-dependent proton pump. J Cell Biol. 1983 Sep;97(3):929–934. [PMC free article] [PubMed]
  • Ohkuma S, Moriyama Y, Takano T. Identification and characterization of a proton pump on lysosomes by fluorescein-isothiocyanate-dextran fluorescence. Proc Natl Acad Sci U S A. 1982 May;79(9):2758–2762. [PMC free article] [PubMed]
  • Ysern X, Amzel LM, Pedersen PL. ATP synthases--structure of the F1-moiety and its relationship to function and mechanism. J Bioenerg Biomembr. 1988 Aug;20(4):423–450. [PubMed]
  • Futai M, Noumi T, Maeda M. Mechanism of F1-ATPase studied by the genetic approach. J Bioenerg Biomembr. 1988 Aug;20(4):469–480. [PubMed]
  • Bowman BJ, Dschida WJ, Harris T, Bowman EJ. The vacuolar ATPase of Neurospora crassa contains an F1-like structure. J Biol Chem. 1989 Sep 15;264(26):15606–15612. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem Compound links
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...