• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Jul 15, 1992; 89(14): 6232–6236.
PMCID: PMC49474

Targeted oncogene activation by site-specific recombination in transgenic mice.

Abstract

An efficient and accurate method for controlled in vivo transgene modulation by site-directed recombination is described. Seven transgenic mouse founder lines were produced carrying the murine lens-specific alpha A-crystallin promoter and the simian virus 40 large tumor-antigen gene sequence, separated by a 1.3-kilobase-pair Stop sequence that contains elements preventing expression of the large tumor-antigen gene and Cre recombinase recognition sites. Progeny from two of these lines were mated with transgenic mice expressing the Cre recombinase under control of either the murine alpha A-crystallin promoter or the human cytomegalovirus promoter. All double-transgenic offspring developed lens tumors. Subsequent analysis confirmed that tumor formation resulted from large tumor-antigen activation via site-specific, Cre-mediated deletion of Stop sequences.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Craig NL. The mechanism of conservative site-specific recombination. Annu Rev Genet. 1988;22:77–105. [PubMed]
  • Roca AI, Cox MM. The RecA protein: structure and function. Crit Rev Biochem Mol Biol. 1990;25(6):415–456. [PubMed]
  • Sandmeier H, Iida S, Meyer J, Hiestand-Nauer R, Arber W. Site-specific DNA recombination system Min of plasmid p15B: a cluster of overlapping invertible DNA segments. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1109–1113. [PMC free article] [PubMed]
  • Smith GR. Homologous recombination in prokaryotes: enzymes and controlling sites. Genome. 1989;31(2):520–527. [PubMed]
  • Stark WM, Boocock MR, Sherratt DJ. Site-specific recombination by Tn3 resolvase. Trends Genet. 1989 Sep;5(9):304–309. [PubMed]
  • Araki H, Jearnpipatkul A, Tatsumi H, Sakurai T, Ushio K, Muta T, Oshima Y. Molecular and functional organization of yeast plasmid pSR1. J Mol Biol. 1985 Mar 20;182(2):191–203. [PubMed]
  • Broach JR, Hicks JB. Replication and recombination functions associated with the yeast plasmid, 2 mu circle. Cell. 1980 Sep;21(2):501–508. [PubMed]
  • Oettinger MA, Schatz DG, Gorka C, Baltimore D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science. 1990 Jun 22;248(4962):1517–1523. [PubMed]
  • Petes TD, Detloff P, Jinks-Robertson S, Judd SR, Kupiec M, Nag D, Stapleton A, Symington LS, Vincent A, White M. Recombination in yeast and the recombinant DNA technology. Genome. 1989;31(2):536–540. [PubMed]
  • Schatz DG, Oettinger MA, Baltimore D. The V(D)J recombination activating gene, RAG-1. Cell. 1989 Dec 22;59(6):1035–1048. [PubMed]
  • Austin S, Ziese M, Sternberg N. A novel role for site-specific recombination in maintenance of bacterial replicons. Cell. 1981 Sep;25(3):729–736. [PubMed]
  • Hoess RH, Abremski K. Mechanism of strand cleavage and exchange in the Cre-lox site-specific recombination system. J Mol Biol. 1985 Feb 5;181(3):351–362. [PubMed]
  • Sternberg N, Hamilton D. Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol. 1981 Aug 25;150(4):467–486. [PubMed]
  • Sauer B. Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1987 Jun;7(6):2087–2096. [PMC free article] [PubMed]
  • Sauer B, Henderson N. Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome. Nucleic Acids Res. 1989 Jan 11;17(1):147–161. [PMC free article] [PubMed]
  • Sauer B, Henderson N. Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biol. 1990 May;2(5):441–449. [PubMed]
  • Mahon KA, Chepelinsky AB, Khillan JS, Overbeek PA, Piatigorsky J, Westphal H. Oncogenesis of the lens in transgenic mice. Science. 1987 Mar 27;235(4796):1622–1628. [PubMed]
  • Sauer B, Henderson N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5166–5170. [PMC free article] [PubMed]
  • Khillan JS, Oskarsson MK, Propst F, Kuwabara T, Vande Woude GF, Westphal H. Defects in lens fiber differentiation are linked to c-mos overexpression in transgenic mice. Genes Dev. 1987 Dec;1(10):1327–1335. [PubMed]
  • Nakamura T, Mahon KA, Miskin R, Dey A, Kuwabara T, Westphal H. Differentiation and oncogenesis: phenotypically distinct lens tumors in transgenic mice. New Biol. 1989 Nov;1(2):193–204. [PubMed]
  • Kraft R, Tardiff J, Krauter KS, Leinwand LA. Using mini-prep plasmid DNA for sequencing double stranded templates with Sequenase. Biotechniques. 1988 Jun;6(6):544–549. [PubMed]
  • Byrne GW, Ruddle FH. Multiplex gene regulation: a two-tiered approach to transgene regulation in transgenic mice. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5473–5477. [PMC free article] [PubMed]
  • Khillan JS, Deen KC, Yu SH, Sweet RW, Rosenberg M, Westphal H. Gene transactivation mediated by the TAT gene of human immunodeficiency virus in transgenic mice. Nucleic Acids Res. 1988 Feb 25;16(4):1423–1430. [PMC free article] [PubMed]
  • Ornitz DM, Moreadith RW, Leder P. Binary system for regulating transgene expression in mice: targeting int-2 gene expression with yeast GAL4/UAS control elements. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):698–702. [PMC free article] [PubMed]
  • Argos P, Landy A, Abremski K, Egan JB, Haggard-Ljungquist E, Hoess RH, Kahn ML, Kalionis B, Narayana SV, Pierson LS, 3rd, et al. The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J. 1986 Feb;5(2):433–440. [PMC free article] [PubMed]
  • Golic KG, Lindquist S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell. 1989 Nov 3;59(3):499–509. [PubMed]
  • O'Gorman S, Fox DT, Wahl GM. Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science. 1991 Mar 15;251(4999):1351–1355. [PubMed]
  • Matsuzaki H, Nakajima R, Nishiyama J, Araki H, Oshima Y. Chromosome engineering in Saccharomyces cerevisiae by using a site-specific recombination system of a yeast plasmid. J Bacteriol. 1990 Feb;172(2):610–618. [PMC free article] [PubMed]
  • Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. [PubMed]
  • Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. [PMC free article] [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...