• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Jun 15, 1992; 89(12): 5266–5270.

Rapid evolution of the human gene for cytochrome c oxidase subunit IV.


We have compared the DNA sequences of nine mammalian genes for cytochrome c oxidase subunit IV (COX4 genes)--four expressed genes (human, bovine, rat, and mouse) and five pseudogenes (human, chimpanzee, orangutan, squirrel monkey, and bovine)--and constructed the sequence of the ancestral mammalian COX4 gene. By analyzing these sequences to determine the pattern and rate of nucleotide substitution in each branch of the evolutionary tree, we deduced that the human gene has evolved rapidly since the origin of the primate pseudogene approximately 41 million years ago, and we discuss the suggestion that this results from coevolution of nuclear and mitochondrial genes for cytochrome c oxidase.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Brown WM, Prager EM, Wang A, Wilson AC. Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol. 1982;18(4):225–239. [PubMed]
  • Wu CI, Li WH. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1741–1745. [PMC free article] [PubMed]
  • Britten RJ. Rates of DNA sequence evolution differ between taxonomic groups. Science. 1986 Mar 21;231(4744):1393–1398. [PubMed]
  • Goodman M. Rates of molecular evolution: the hominoid slowdown. Bioessays. 1985 Jul;3(1):9–14. [PubMed]
  • Li WH, Tanimura M. The molecular clock runs more slowly in man than in apes and monkeys. Nature. 1987 Mar 5;326(6108):93–96. [PubMed]
  • Sacher R, Steffens GJ, Buse G. Studies on cytochrome c oxidase, VI. Polypeptide IV. the complete primary structure. Hoppe Seylers Z Physiol Chem. 1979 Oct;360(10):1385–1392. [PubMed]
  • Lomax MI, Bachman NJ, Nasoff MS, Caruthers MH, Grossman LI. Isolation and characterization of a cDNA clone for bovine cytochrome c oxidase subunit IV. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6295–6299. [PMC free article] [PubMed]
  • Bachman NJ, Lomax MI, Grossman LI. Two bovine genes for cytochrome c oxidase subunit IV: a processed pseudogene and an expressed gene. Gene. 1987;55(2-3):219–229. [PubMed]
  • Zeviani M, Nakagawa M, Herbert J, Lomax MI, Grossman LI, Sherbany AA, Miranda AF, DiMauro S, Schon EA. Isolation of a cDNA clone encoding subunit IV of human cytochrome c oxidase. Gene. 1987;55(2-3):205–217. [PubMed]
  • Lomax MI, Welch MD, Darras BT, Francke U, Grossman LI. Novel use of a chimpanzee pseudogene for chromosomal mapping of human cytochrome c oxidase subunit IV. Gene. 1990 Feb 14;86(2):209–216. [PubMed]
  • Gopalan G, Droste M, Kadenbach B. Nucleotide sequence of cDNA encoding subunit IV of cytochrome c oxidase from fetal rat liver. Nucleic Acids Res. 1989 Jun 12;17(11):4376–4376. [PMC free article] [PubMed]
  • Grossman LI, Akamatsu M. Nucleotide sequence of a mouse cDNA for subunit IV of cytochrome c oxidase. Nucleic Acids Res. 1990 Nov 11;18(21):6454–6454. [PMC free article] [PubMed]
  • Ewart G, Lightowlers R, Zhang YZ, Balan VJ, Kennaway N, Capaldi RA. Tissue specificity and defects in human cytochrome c oxidase. Biochim Biophys Acta. 1990 Jul 25;1018(2-3):223–224. [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed]
  • Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986 Sep;3(5):418–426. [PubMed]
  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. [PubMed]
  • Yamada M, Amuro N, Goto Y, Okazaki T. Structural organization of the rat cytochrome c oxidase subunit IV gene. J Biol Chem. 1990 May 5;265(13):7687–7692. [PubMed]
  • Li WH, Gouy M, Sharp PM, O'hUigin C, Yang YW. Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6703–6707. [PMC free article] [PubMed]
  • Koop BF, Tagle DA, Goodman M, Slightom JL. A molecular view of primate phylogeny and important systematic and evolutionary questions. Mol Biol Evol. 1989 Nov;6(6):580–612. [PubMed]
  • Cann RL, Brown WM, Wilson AC. Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics. 1984 Mar;106(3):479–499. [PMC free article] [PubMed]
  • Evans MJ, Scarpulla RC. The human somatic cytochrome c gene: two classes of processed pseudogenes demarcate a period of rapid molecular evolution. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9625–9629. [PMC free article] [PubMed]
  • Ramharack R, Deeley RG. Structure and evolution of primate cytochrome c oxidase subunit II gene. J Biol Chem. 1987 Oct 15;262(29):14014–14021. [PubMed]
  • Osheroff N, Speck SH, Margoliash E, Veerman EC, Wilms J, König BW, Muijsers AO. The reaction of primate cytochromes c with cytochrome c oxidase. Analysis of the polarographic assay. J Biol Chem. 1983 May 10;258(9):5731–5738. [PubMed]
  • Yanamura W, Zhang YZ, Takamiya S, Capaldi RA. Tissue-specific differences between heart and liver cytochrome c oxidase. Biochemistry. 1988 Jun 28;27(13):4909–4914. [PubMed]
  • Kuhn-Nentwig L, Kadenbach B. Immunological identification of four different polypeptides in 'subunit VII' of mammalian cytochrome c oxidase. FEBS Lett. 1984 Jul 9;172(2):189–192. [PubMed]
  • Lightowlers R, Ewart G, Aggeler R, Zhang YZ, Calavetta L, Capaldi RA. Isolation and characterization of the cDNAs encoding two isoforms of subunit CIX of bovine cytochrome c oxidase. J Biol Chem. 1990 Feb 15;265(5):2677–2681. [PubMed]
  • Van Kuilenburg AB, Muijsers AO, Demol H, Dekker HL, Van Beeumen JJ. Human heart cytochrome c oxidase subunit VIII. Purification and determination of the complete amino acid sequence. FEBS Lett. 1988 Nov 21;240(1-2):127–132. [PubMed]
  • Rizzuto R, Nakase H, Darras B, Francke U, Fabrizi GM, Mengel T, Walsh F, Kadenbach B, DiMauro S, Schon EA. A gene specifying subunit VIII of human cytochrome c oxidase is localized to chromosome 11 and is expressed in both muscle and non-muscle tissues. J Biol Chem. 1989 Jun 25;264(18):10595–10600. [PubMed]
  • Easteal S. The relative rate of DNA evolution in primates. Mol Biol Evol. 1991 Jan;8(1):115–127. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Gene
    Gene links
  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • HomoloGene
    HomoloGene links
  • MedGen
    Related information in MedGen
  • Nucleotide
    Published Nucleotide sequences
  • OMIM
    OMIM record citing PubMed
  • Protein
    Published protein sequences
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...