Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Apr 1, 1992; 89(7): 2605–2609.

A uridine-rich sequence required for translation of prokaryotic mRNA.


Binding of 30S ribosomal subunits to mRNA during the initiation of prokaryotic translation is known to be influenced by the initiation codon and the Shine-Dalgarno sequence. Site-directed mutagenesis of rnd, the Escherichia coli gene encoding RNase D, has now shown that a U8 sequence upstream of the Shine-Dalgarno region is also essential for expression of this mRNA. Alteration of two to five uridine residues within this sequence has no effect on mRNA levels but decreases RNase D protein and activity by as much as 95%, indicating that the U-rich sequence acts as an enhancer of translation. Moreover, mutant transcripts bind to 30S ribosomes in vitro with lower affinity than their wild-type counterparts, suggesting that the role of the U8 sequence is in the initial binding of ribosomes to the translation initiation region of the message. These data demonstrate that sequences other than those previously recognized can be essential for translation initiation.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Gold L. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem. 1988;57:199–233. [PubMed]
  • McCarthy JE, Gualerzi C. Translational control of prokaryotic gene expression. Trends Genet. 1990 Mar;6(3):78–85. [PubMed]
  • Hartz D, McPheeters DS, Gold L. Influence of mRNA determinants on translation initiation in Escherichia coli. J Mol Biol. 1991 Mar 5;218(1):83–97. [PubMed]
  • de Smit MH, van Duin J. Control of prokaryotic translational initiation by mRNA secondary structure. Prog Nucleic Acid Res Mol Biol. 1990;38:1–35. [PubMed]
  • Schneider TD, Stormo GD, Gold L, Ehrenfeucht A. Information content of binding sites on nucleotide sequences. J Mol Biol. 1986 Apr 5;188(3):415–431. [PubMed]
  • Dreyfus M. What constitutes the signal for the initiation of protein synthesis on Escherichia coli mRNAs? J Mol Biol. 1988 Nov 5;204(1):79–94. [PubMed]
  • Boni IV, Isaeva DM, Musychenko ML, Tzareva NV. Ribosome-messenger recognition: mRNA target sites for ribosomal protein S1. Nucleic Acids Res. 1991 Jan 11;19(1):155–162. [PMC free article] [PubMed]
  • Zhang JR, Deutscher MP. Escherichia coli RNase D: sequencing of the rnd structural gene and purification of the overexpressed protein. Nucleic Acids Res. 1988 Jul 25;16(14A):6265–6278. [PMC free article] [PubMed]
  • Zhang JR, Deutscher MP. Analysis of the upstream region of the Escherichia coli rnd gene encoding RNase D. Evidence for translational regulation of a putative tRNA processing enzyme. J Biol Chem. 1989 Oct 25;264(30):18228–18233. [PubMed]
  • Zaniewski R, Petkaitis E, Deutscher MP. A multiple mutant of Escherichia coli lacking the exoribonucleases RNase II, RNase D, and RNase BN. J Biol Chem. 1984 Oct 10;259(19):11651–11653. [PubMed]
  • Kunkel TA, Roberts JD, Zakour RA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. [PubMed]
  • Zhang JR, Deutscher MP. Cloning, characterization, and effects of overexpression of the Escherichia coli rnd gene encoding RNase D. J Bacteriol. 1988 Feb;170(2):522–527. [PMC free article] [PubMed]
  • Zhang JR, Deutscher MP. Transfer RNA is a substrate for RNase D in vivo. J Biol Chem. 1988 Dec 5;263(34):17909–17912. [PubMed]
  • Zuker M, Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981 Jan 10;9(1):133–148. [PMC free article] [PubMed]
  • Freier SM, Kierzek R, Jaeger JA, Sugimoto N, Caruthers MH, Neilson T, Turner DH. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9373–9377. [PMC free article] [PubMed]
  • Belasco JG, Higgins CF. Mechanisms of mRNA decay in bacteria: a perspective. Gene. 1988 Dec 10;72(1-2):15–23. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...