• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Mar 1, 1992; 89(5): 1775–1779.
PMCID: PMC48535

Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana.

Abstract

The energy-dependent transport of solutes across the vacuolar membrane (tonoplast) of plant cells is driven by two H+ pumps: a vacuolar ("V-type") H(+)-ATPase (EC 3.6.1.3) and a H(+)-translocating (pyrophosphate-energized) inorganic pyrophosphatase (H(+)-PPase; EC 3.6.1.1). The H(+)-PPase, like the V-type H(+)-ATPase, is abundant and ubiquitous in the vacuolar membranes of plant cells, and both enzymes make a substantial contribution to the transtonoplast H(+)-electrochemical potential difference. Here, we report the cloning and sequence of cDNAs encoding the tonoplast H(+)-PPase of Arabidopsis thaliana. The protein predicted from the nucleotide sequence of the cDNAs is constituted of 770 amino acids and has a molecular weight of 80,800. It is a highly hydrophobic integral membrane protein, and the structure derived from hydrophilicity plots contains at least 13 transmembrane spans. Since the tonoplast H(+)-PPase appears to be constituted of one polypeptide species and genomic Southern analyses indicate that the gene encoding the Mr 80,800 polypeptide is present in only a single copy in the genome of Arabidopsis, it is suggested that the H(+)-PPase has been cloned in its entirety. The lack of sequence identities between the tonoplast H(+)-PPase and any other characterized H+ pump or PPi-dependent enzyme implies a different evolutionary origin for this translocase.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Nelson N, Taiz L. The evolution of H+-ATPases. Trends Biochem Sci. 1989 Mar;14(3):113–116. [PubMed]
  • Rea PA, Poole RJ. Chromatographic resolution of h-translocating pyrophosphatase from h-translocating ATPase of higher plant tonoplast. Plant Physiol. 1986 May;81(1):126–129. [PMC free article] [PubMed]
  • Rea PA, Poole RJ. Proton-Translocating Inorganic Pyrophosphatase in Red Beet (Beta vulgaris L.) Tonoplast Vesicles. Plant Physiol. 1985 Jan;77(1):46–52. [PMC free article] [PubMed]
  • Maeshima M, Yoshida S. Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J Biol Chem. 1989 Nov 25;264(33):20068–20073. [PubMed]
  • Sarafian V, Poole RJ. Purification of an h-translocating inorganic pyrophosphatase from vacuole membranes of red beet. Plant Physiol. 1989 Sep;91(1):34–38. [PMC free article] [PubMed]
  • Aebersold RH, Leavitt J, Saavedra RA, Hood LE, Kent SB. Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc Natl Acad Sci U S A. 1987 Oct;84(20):6970–6974. [PMC free article] [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed]
  • Lütcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA. Selection of AUG initiation codons differs in plants and animals. EMBO J. 1987 Jan;6(1):43–48. [PMC free article] [PubMed]
  • Maddy AH. A critical evaluation of the analysis of membrane proteins by polyacrylamide gel electrophoresis in the presence of dodecyl sulphate. J Theor Biol. 1976 Oct 21;62(2):315–326. [PubMed]
  • Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. [PubMed]
  • Eisenberg D, Schwarz E, Komaromy M, Wall R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol. 1984 Oct 15;179(1):125–142. [PubMed]
  • Garnier J, Osguthorpe DJ, Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. [PubMed]
  • von Heijne G, Gavel Y. Topogenic signals in integral membrane proteins. Eur J Biochem. 1988 Jul 1;174(4):671–678. [PubMed]
  • Lahti R, Pitkäranta T, Valve E, Ilta I, Kukko-Kalske E, Heinonen J. Cloning and characterization of the gene encoding inorganic pyrophosphatase of Escherichia coli K-12. J Bacteriol. 1988 Dec;170(12):5901–5907. [PMC free article] [PubMed]
  • Cohen SA, Sterner R, Keim PS, Heinrikson RL. Covalent structural analysis of yeast inorganic pyrophosphatase. J Biol Chem. 1978 Feb 10;253(3):889–897. [PubMed]
  • Krishnan VA, Gnanam A. Properties and regulation of Mg2+-dependent chloroplast inorganic pyrophosphatase from Sorghum vulgare leaves. Arch Biochem Biophys. 1988 Jan;260(1):277–284. [PubMed]
  • Kieber JJ, Signer ER. Cloning and characterization of an inorganic pyrophosphatase gene from Arabidopsis thaliana. Plant Mol Biol. 1991 Feb;16(2):345–348. [PubMed]
  • Stark MJ, Milner JS. Cloning and analysis of the Kluyveromyces lactis TRP1 gene: a chromosomal locus flanked by genes encoding inorganic pyrophosphatase and histone H3. Yeast. 1989 Jan-Feb;5(1):35–50. [PubMed]
  • Kolakowski LF, Jr, Schloesser M, Cooperman BS. Cloning, molecular characterization and chromosome localization of the inorganic pyrophosphatase (PPA) gene from S. cerevisiae. Nucleic Acids Res. 1988 Nov 25;16(22):10441–10452. [PMC free article] [PubMed]
  • Lundin M, Baltscheffsky H, Ronne H. Yeast PPA2 gene encodes a mitochondrial inorganic pyrophosphatase that is essential for mitochondrial function. J Biol Chem. 1991 Jul 5;266(19):12168–12172. [PubMed]
  • Maeshima M. H(+)-translocating inorganic pyrophosphatase of plant vacuoles. Inhibition by Ca2+, stabilization by Mg2+ and immunological comparison with other inorganic pyrophosphatases. Eur J Biochem. 1991 Feb 26;196(1):11–17. [PubMed]
  • Nyrén P, Nore BF, Strid A. Proton-pumping N,N'-dicyclohexylcarbodiimide-sensitive inorganic pyrophosphate synthase from Rhodospirillum rubrum: purification, characterization, and reconstitution. Biochemistry. 1991 Mar 19;30(11):2883–2887. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • Gene
    Gene
    Gene links
  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • HomoloGene
    HomoloGene
    HomoloGene links
  • MedGen
    MedGen
    Related information in MedGen
  • Nucleotide
    Nucleotide
    Published Nucleotide sequences
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • Protein
    Protein
    Published protein sequences
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links
  • Taxonomy
    Taxonomy
    Related taxonomy entry
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...