• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Jan 1, 1992; 89(1): 118–122.
PMCID: PMC48187

Pertussis toxin has eukaryotic-like carbohydrate recognition domains.

Abstract

Bordetella pertussis is bound to glycoconjugates on human cilia and macrophages by multiple adhesins, including pertussis toxin. The cellular recognition properties of the B oligomer of pertussis toxin were characterized and the location and structural requirements of the recognition domains were identified by site-directed mutagenesis of recombinant pertussis toxin subunits. Differential recognition of cilia and macrophages, respectively, was localized to subunits S2 and S3 of the B oligomer. Despite greater than 80% sequence homology between these subunits, ciliary lactosylceramide exclusively recognized S2 and leukocytic gangliosides bound only S3. Substitution at residue 44, 45, 50, or 51 in S2 resulted in a shift of carbohydrate recognition from lactosylceramide to gangliosides. Mutational exchange of amino acid residues 37-52 between S2 and S3 interchanged their carbohydrate and target cell specificity. Comparison of these carbohydrate recognition sequences to those of plant and animal lectins revealed that regions essential for function of the prokaryotic lectins were strongly related to a subset of eukaryotic carbohydrate recognition domains of the C type.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Saukkonen K, Cabellos C, Burroughs M, Prasad S, Tuomanen E. Integrin-mediated localization of Bordetella pertussis within macrophages: role in pulmonary colonization. J Exp Med. 1991 May 1;173(5):1143–1149. [PMC free article] [PubMed]
  • Pittman M. The concept of pertussis as a toxin-mediated disease. Pediatr Infect Dis. 1984 Sep-Oct;3(5):467–486. [PubMed]
  • Tuomanen E, Weiss A. Characterization of two adhesins of Bordetella pertussis for human ciliated respiratory-epithelial cells. J Infect Dis. 1985 Jul;152(1):118–125. [PubMed]
  • Relman D, Tuomanen E, Falkow S, Golenbock DT, Saukkonen K, Wright SD. Recognition of a bacterial adhesion by an integrin: macrophage CR3 (alpha M beta 2, CD11b/CD18) binds filamentous hemagglutinin of Bordetella pertussis. Cell. 1990 Jun 29;61(7):1375–1382. [PubMed]
  • Tuomanen E. Piracy of adhesins: attachment of superinfecting pathogens to respiratory cilia by secreted adhesins of Bordetella pertussis. Infect Immun. 1986 Dec;54(3):905–908. [PMC free article] [PubMed]
  • Katada T, Ui M. Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc Natl Acad Sci U S A. 1982 May;79(10):3129–3133. [PMC free article] [PubMed]
  • Witvliet MH, Burns DL, Brennan MJ, Poolman JT, Manclark CR. Binding of pertussis toxin to eucaryotic cells and glycoproteins. Infect Immun. 1989 Nov;57(11):3324–3330. [PMC free article] [PubMed]
  • Tuomanen E, Towbin H, Rosenfelder G, Braun D, Larson G, Hansson GC, Hill R. Receptor analogs and monoclonal antibodies that inhibit adherence of Bordetella pertussis to human ciliated respiratory epithelial cells. J Exp Med. 1988 Jul 1;168(1):267–277. [PMC free article] [PubMed]
  • Brennan MJ, David JL, Kenimer JG, Manclark CR. Lectin-like binding of pertussis toxin to a 165-kilodalton Chinese hamster ovary cell glycoprotein. J Biol Chem. 1988 Apr 5;263(10):4895–4899. [PubMed]
  • Capiau C, Petre J, Van Damme J, Puype M, Vandekerckhove J. Protein-chemical analysis of pertussis toxin reveals homology between the subunits S2 and S3, between S1 and the A chains of enterotoxins of Vibrio cholerae and Escherichia coli and identifies S2 as the haptoglobin-binding subunit. FEBS Lett. 1986 Aug 18;204(2):336–340. [PubMed]
  • Tyrrell GJ, Peppler MS, Bonnah RA, Clark CG, Chong P, Armstrong GD. Lectinlike properties of pertussis toxin. Infect Immun. 1989 Jun;57(6):1854–1857. [PMC free article] [PubMed]
  • Armstrong GD, Peppler MS. Maintenance of biological activity of pertussis toxin radioiodinated while bound to fetuin-agarose. Infect Immun. 1987 May;55(5):1294–1299. [PMC free article] [PubMed]
  • Schmidt MA, Schmidt W. Inhibition of pertussis toxin binding to model receptors by antipeptide antibodies directed at an antigenic domain of the S2 subunit. Infect Immun. 1989 Dec;57(12):3828–3833. [PMC free article] [PubMed]
  • Sharon N, Lis H. Legume lectins--a large family of homologous proteins. FASEB J. 1990 Nov;4(14):3198–3208. [PubMed]
  • Bartley TD, Whiteley DW, Mar VL, Burns DL, Burnette WN. Pertussis holotoxoid formed in vitro with a genetically deactivated S1 subunit. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8353–8357. [PMC free article] [PubMed]
  • Locht C, Keith JM. Pertussis toxin gene: nucleotide sequence and genetic organization. Science. 1986 Jun 6;232(4755):1258–1264. [PubMed]
  • Nicosia A, Perugini M, Franzini C, Casagli MC, Borri MG, Antoni G, Almoni M, Neri P, Ratti G, Rappuoli R. Cloning and sequencing of the pertussis toxin genes: operon structure and gene duplication. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4631–4635. [PMC free article] [PubMed]
  • Morris C, Ling L. State of the art: poison centers in Minnesota. Minn Med. 1988 Nov;71(11):698–706. [PubMed]
  • Burnette WN, Cieplak W, Mar VL, Kaljot KT, Sato H, Keith JM. Pertussis toxin S1 mutant with reduced enzyme activity and a conserved protective epitope. Science. 1988 Oct 7;242(4875):72–74. [PubMed]
  • Cieplak W, Burnette WN, Mar VL, Kaljot KT, Morris CF, Chen KK, Sato H, Keith JM. Identification of a region in the S1 subunit of pertussis toxin that is required for enzymatic activity and that contributes to the formation of a neutralizing antigenic determinant. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4667–4671. [PMC free article] [PubMed]
  • Sato H, Sato Y, Ito A, Ohishi I. Effect of monoclonal antibody to pertussis toxin on toxin activity. Infect Immun. 1987 Apr;55(4):909–915. [PMC free article] [PubMed]
  • Sobel E, Martinez HM. A multiple sequence alignment program. Nucleic Acids Res. 1986 Jan 10;14(1):363–374. [PMC free article] [PubMed]
  • Shahin RD, Witvliet MH, Manclark CR. Mechanism of pertussis toxin B oligomer-mediated protection against Bordetella pertussis respiratory infection. Infect Immun. 1990 Dec;58(12):4063–4068. [PMC free article] [PubMed]
  • Schmidt W, Schmidt MA. Mapping of linear B-cell epitopes of the S2 subunit of pertussis toxin. Infect Immun. 1989 Feb;57(2):438–445. [PMC free article] [PubMed]
  • Lund B, Lindberg F, Marklund BI, Normark S. The PapG protein is the alpha-D-galactopyranosyl-(1----4)-beta-D-galactopyranose-binding adhesin of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5898–5902. [PMC free article] [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...