• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Dec 15, 1993; 90(24): 11563–11567.
PMCID: PMC48024

BC200 RNA: a neural RNA polymerase III product encoded by a monomeric Alu element.

Abstract

We demonstrate that the BC200 RNA gene, which encodes a neural small cytoplasmic RNA, is a member of the most prodigious family of interspersed repetitive DNA and that its product represents an example of a primate tissue-specific RNA polymerase III transcript. The BC200 RNA gene is an early monomeric member and one of the few postulated transcriptionally active Alu sequences in this family of nearly half a million retropositionally amplified elements dispersed throughout the human genome. Furthermore, the isolation of two pseudogenes, BC200 beta and BC200 gamma, demonstrates the gene's transpositional ability. Interestingly, the BC200 beta pseudogene may have been generated by a conversion-like event after the human/chimpanzee divergence, resulting in an exchange of the left arm of a dimeric Alu element with the BC200 RNA coding sequence. Our data on conserved features of the active BC200 alpha gene suggest that its RNA product has been "exapted" into a function of the primate brain and provides a selective advantage to the species.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • LEWIS EB. Pseudoallelism and gene evolution. Cold Spring Harb Symp Quant Biol. 1951;16:159–174. [PubMed]
  • Brosius J. Retroposons--seeds of evolution. Science. 1991 Feb 15;251(4995):753–753. [PubMed]
  • Weiner AM, Deininger PL, Efstratiadis A. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem. 1986;55:631–661. [PubMed]
  • Britten RJ, Davidson EH. Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Q Rev Biol. 1971 Jun;46(2):111–138. [PubMed]
  • Bonner J, Garrard WT, Gottesfeld J, Holmes DS. Functional organization of the mammalian genome. Cold Spring Harb Symp Quant Biol. 1974;38:303–310. [PubMed]
  • Jelinek WR, Schmid CW. Repetitive sequences in eukaryotic DNA and their expression. Annu Rev Biochem. 1982;51:813–844. [PubMed]
  • Deininger PL, Batzer MA, Hutchison CA, 3rd, Edgell MH. Master genes in mammalian repetitive DNA amplification. Trends Genet. 1992 Sep;8(9):307–311. [PubMed]
  • Britten RJ, Baron WF, Stout DB, Davidson EH. Sources and evolution of human Alu repeated sequences. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4770–4774. [PMC free article] [PubMed]
  • Doolittle WF, Sapienza C. Selfish genes, the phenotype paradigm and genome evolution. Nature. 1980 Apr 17;284(5757):601–603. [PubMed]
  • Singer MF. SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell. 1982 Mar;28(3):433–434. [PubMed]
  • Quentin Y. The Alu family developed through successive waves of fixation closely connected with primate lineage history. J Mol Evol. 1988;27(3):194–202. [PubMed]
  • Jurka J, Zuckerkandl E. Free left arms as precursor molecules in the evolution of Alu sequences. J Mol Evol. 1991 Jul;33(1):49–56. [PubMed]
  • Tiedge H, Chen W, Brosius J. Primary structure, neural-specific expression, and dendritic location of human BC200 RNA. J Neurosci. 1993 Jun;13(6):2382–2390. [PubMed]
  • Bankier AT, Weston KM, Barrell BG. Random cloning and sequencing by the M13/dideoxynucleotide chain termination method. Methods Enzymol. 1987;155:51–93. [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Shastry BS, Ng SY, Roeder RG. Multiple factors involved in the transcription of class III genes in Xenopus laevis. J Biol Chem. 1982 Nov 10;257(21):12979–12986. [PubMed]
  • Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. [PMC free article] [PubMed]
  • Murphy S, Tripodi M, Melli M. A sequence upstream from the coding region is required for the transcription of the 7SK RNA genes. Nucleic Acids Res. 1986 Dec 9;14(23):9243–9260. [PMC free article] [PubMed]
  • Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–350. [PubMed]
  • Shen MR, Batzer MA, Deininger PL. Evolution of the master Alu gene(s). J Mol Evol. 1991 Oct;33(4):311–320. [PubMed]
  • Slagel V, Flemington E, Traina-Dorge V, Bradshaw H, Deininger P. Clustering and subfamily relationships of the Alu family in the human genome. Mol Biol Evol. 1987 Jan;4(1):19–29. [PubMed]
  • Willard C, Nguyen HT, Schmid CW. Existence of at least three distinct Alu subfamilies. J Mol Evol. 1987;26(3):180–186. [PubMed]
  • Labuda D, Striker G. Sequence conservation in Alu evolution. Nucleic Acids Res. 1989 Apr 11;17(7):2477–2491. [PMC free article] [PubMed]
  • Bogenhagen DF, Brown DD. Nucleotide sequences in Xenopus 5S DNA required for transcription termination. Cell. 1981 Apr;24(1):261–270. [PubMed]
  • Skowronski J, Fanning TG, Singer MF. Unit-length line-1 transcripts in human teratocarcinoma cells. Mol Cell Biol. 1988 Apr;8(4):1385–1397. [PMC free article] [PubMed]
  • Geiduschek EP, Tocchini-Valentini GP. Transcription by RNA polymerase III. Annu Rev Biochem. 1988;57:873–914. [PubMed]
  • Vidal F, Mougneau E, Glaichenhaus N, Vaigot P, Darmon M, Cuzin F. Coordinated posttranscriptional control of gene expression by modular elements including Alu-like repetitive sequences. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):208–212. [PMC free article] [PubMed]
  • DeChiara TM, Brosius J. Neural BC1 RNA: cDNA clones reveal nonrepetitive sequence content. Proc Natl Acad Sci U S A. 1987 May;84(9):2624–2628. [PMC free article] [PubMed]
  • Willis IM. RNA polymerase III. Genes, factors and transcriptional specificity. Eur J Biochem. 1993 Feb 15;212(1):1–11. [PubMed]
  • Brosius J, Gould SJ. On "genomenclature": a comprehensive (and respectful) taxonomy for pseudogenes and other "junk DNA". Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10706–10710. [PMC free article] [PubMed]
  • Matera AG, Hellmann U, Schmid CW. A transpositionally and transcriptionally competent Alu subfamily. Mol Cell Biol. 1990 Oct;10(10):5424–5432. [PMC free article] [PubMed]
  • Maraia RJ, Driscoll CT, Bilyeu T, Hsu K, Darlington GJ. Multiple dispersed loci produce small cytoplasmic Alu RNA. Mol Cell Biol. 1993 Jul;13(7):4233–4241. [PMC free article] [PubMed]
  • von Sternberg RM, Novick GE, Gao GP, Herrera RJ. Genome canalization: the coevolution of transposable and interspersed repetitive elements with single copy DNA. Genetica. 1992;86(1-3):215–246. [PubMed]
  • Shapiro JA. Natural genetic engineering in evolution. Genetica. 1992;86(1-3):99–111. [PubMed]
  • King CC. Modular transposition and the dynamical structure of eukaryote regulatory evolution. Genetica. 1992;86(1-3):127–142. [PubMed]
  • Tiedge H, Fremeau RT, Jr, Weinstock PH, Arancio O, Brosius J. Dendritic location of neural BC1 RNA. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2093–2097. [PMC free article] [PubMed]
  • Martignetti JA, Brosius J. Neural BC1 RNA as an evolutionary marker: guinea pig remains a rodent. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9698–9702. [PMC free article] [PubMed]
  • Steward O, Banker GA. Getting the message from the gene to the synapse: sorting and intracellular transport of RNA in neurons. Trends Neurosci. 1992 May;15(5):180–186. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Gene
    Gene
    Gene links
  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • MedGen
    MedGen
    Related information in MedGen
  • Nucleotide
    Nucleotide
    Published Nucleotide sequences
  • OMIM
    OMIM
    OMIM record citing PubMed
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

    Your browsing activity is empty.

    Activity recording is turned off.

    Turn recording back on

    See more...