• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Dec 15, 1993; 90(24): 11558–11562.
PMCID: PMC48023

Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins.

Abstract

Phylogenetic relationships among plants, animals, and fungi were examined by using sequences from 25 proteins. Four insertions/deletions were found that are shared by two of the three taxonomic groups in question, and all four are uniquely shared by animals and fungi relative to plants, protists, and bacteria. These include a 12-amino acid insertion in translation elongation factor 1 alpha and three small gaps in enolase. Maximum-parsimony trees were constructed from published data for four of the most broadly sequenced of the 25 proteins, actin, alpha-tubulin, beta-tubulin, and elongation factor 1 alpha, with the latter supplemented by three new outgroup sequences. All four proteins place animals and fungi together as a monophyletic group to the exclusion of plants and a broad diversity of protists. In all cases, bootstrap analyses show no support for either an animal-plant or fungal-plant clade. This congruence among multiple lines of evidence strongly suggests, in contrast to traditional and current classification, that animals and fungi are sister groups while plants constitute an independent evolutionary lineage.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Whittaker RH, Margulis L. Protist classification and the kingdoms of organisms. Biosystems. 1978 Apr;10(1-2):3–18. [PubMed]
  • Hasegawa M, Iida Y, Yano T, Takaiwa F, Iwabuchi M. Phylogenetic relationships among eukaryotic kingdoms inferred from ribosomal RNA sequences. J Mol Evol. 1985;22(1):32–38. [PubMed]
  • Cedergren R, Gray MW, Abel Y, Sankoff D. The evolutionary relationships among known life forms. J Mol Evol. 1988 Dec;28(1-2):98–112. [PubMed]
  • Sogin ML, Gunderson JH, Elwood HJ, Alonso RA, Peattie DA. Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science. 1989 Jan 6;243(4887):75–77. [PubMed]
  • Hendriks L, De Baere R, Van de Peer Y, Neefs J, Goris A, De Wachter R. The evolutionary position of the rhodophyte Porphyra umbilicalis and the basidiomycete Leucosporidium scottii among other eukaryotes as deduced from complete sequences of small ribosomal subunit RNA. J Mol Evol. 1991 Feb;32(2):167–177. [PubMed]
  • Krishnan S, Barnabas S, Barnabas J. Interrelationships among major protistan groups based on a parsimony network of 5S rRNA sequences. Biosystems. 1990;24(2):135–144. [PubMed]
  • Wainright PO, Hinkle G, Sogin ML, Stickel SK. Monophyletic origins of the metazoa: an evolutionary link with fungi. Science. 1993 Apr 16;260(5106):340–342. [PubMed]
  • Hasegawa M, Hashimoto T, Adachi J, Iwabe N, Miyata T. Early branchings in the evolution of eukaryotes: ancient divergence of entamoeba that lacks mitochondria revealed by protein sequence data. J Mol Evol. 1993 Apr;36(4):380–388. [PubMed]
  • Gouy M, Li WH. Molecular phylogeny of the kingdoms Animalia, Plantae, and Fungi. Mol Biol Evol. 1989 Mar;6(2):109–122. [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Baldauf SL, Palmer JD. Evolutionary transfer of the chloroplast tufA gene to the nucleus. Nature. 1990 Mar 15;344(6263):262–265. [PubMed]
  • Van der Straeten D, Rodrigues-Pousada RA, Goodman HM, Van Montagu M. Plant enolase: gene structure, expression, and evolution. Plant Cell. 1991 Jul;3(7):719–735. [PMC free article] [PubMed]
  • Raff EC. Genetics of microtubule systems. J Cell Biol. 1984 Jul;99(1 Pt 1):1–10. [PMC free article] [PubMed]
  • Gray MW. The endosymbiont hypothesis revisited. Int Rev Cytol. 1992;141:233–357. [PubMed]
  • Smith TL. Disparate evolution of yeasts and filamentous fungi indicated by phylogenetic analysis of glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7063–7066. [PMC free article] [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • Nucleotide
    Nucleotide
    Published Nucleotide sequences
  • Protein
    Protein
    Published protein sequences
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...