• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Dec 1, 1993; 90(23): 10909–10913.
PMCID: PMC47891

Caveolae: where incoming and outgoing messengers meet.

Abstract

Plasmalemmal caveolae were first identified as an endocytic compartment in endothelial cells, where they appear to move molecules across the cell by transcytosis. More recently, they have been found to be sites where small molecules are concentrated and internalized by a process called potocytosis. A growing body of biochemical and morphological evidence indicates that a variety of molecules known to function directly or indirectly in signal transduction are enriched in caveolae. This raises the possibility that a third function for caveolae is to process hormonal and mechanical signals for the cell. Insights gained from studying potocytosis suggest several different ways that this membrane specialization might function to integrate incoming and outgoing cellular messages.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bundgaard M. The three-dimensional organization of smooth endoplasmic reticulum in capillary endothelia: its possible role in regulation of free cytosolic calcium. J Struct Biol. 1991 Aug;107(1):76–85. [PubMed]
  • Severs NJ. Caveolae: static inpocketings of the plasma membrane, dynamic vesicles or plain artifact? J Cell Sci. 1988 Jul;90(Pt 3):341–348. [PubMed]
  • YAMADA E. The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol. 1955 Sep 25;1(5):445–458. [PMC free article] [PubMed]
  • Rothberg KG, Ying YS, Kamen BA, Anderson RG. Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate. J Cell Biol. 1990 Dec;111(6 Pt 2):2931–2938. [PMC free article] [PubMed]
  • Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG. Caveolin, a protein component of caveolae membrane coats. Cell. 1992 Feb 21;68(4):673–682. [PubMed]
  • Ying YS, Anderson RG, Rothberg KG. Each caveola contains multiple glycosyl-phosphatidylinositol-anchored membrane proteins. Cold Spring Harb Symp Quant Biol. 1992;57:593–604. [PubMed]
  • Anderson RG, Kamen BA, Rothberg KG, Lacey SW. Potocytosis: sequestration and transport of small molecules by caveolae. Science. 1992 Jan 24;255(5043):410–411. [PubMed]
  • Anderson RG. Potocytosis of small molecules and ions by caveolae. Trends Cell Biol. 1993 Mar;3(3):69–72. [PubMed]
  • Kamen BA, Wang MT, Streckfuss AJ, Peryea X, Anderson RG. Delivery of folates to the cytoplasm of MA104 cells is mediated by a surface membrane receptor that recycles. J Biol Chem. 1988 Sep 25;263(27):13602–13609. [PubMed]
  • Simionescu N, Simionescu M, Palade GE. Permeability of intestinal capillaries. Pathway followed by dextrans and glycogens. J Cell Biol. 1972 May;53(2):365–392. [PMC free article] [PubMed]
  • Simionescu N, Siminoescu M, Palade GE. Permeability of muscle capillaries to small heme-peptides. Evidence for the existence of patent transendothelial channels. J Cell Biol. 1975 Mar;64(3):586–607. [PMC free article] [PubMed]
  • Simionescu M, Simionescu N, Palade GE. Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors. J Cell Biol. 1982 Aug;94(2):406–413. [PMC free article] [PubMed]
  • Rothberg KG, Ying YS, Kolhouse JF, Kamen BA, Anderson RG. The glycophospholipid-linked folate receptor internalizes folate without entering the clathrin-coated pit endocytic pathway. J Cell Biol. 1990 Mar;110(3):637–649. [PMC free article] [PubMed]
  • Peters KR, Carley WW, Palade GE. Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure. J Cell Biol. 1985 Dec;101(6):2233–2238. [PMC free article] [PubMed]
  • Izumi T, Shibata Y, Yamamoto T. Striped structures on the cytoplasmic surface membranes of the endothelial vesicles of the rat aorta revealed by quick-freeze, deep-etching replicas. Anat Rec. 1988 Mar;220(3):225–232. [PubMed]
  • Izumi T, Shibata Y, Yamamoto T. The cytoplasmic surface structures of uncoated vesicles in various tissues of rat as revealed by quick-freeze, deep-etching replicas. J Electron Microsc (Tokyo) 1989;38(1):47–53. [PubMed]
  • Larner J, Huang LC, Schwartz CF, Oswald AS, Shen TY, Kinter M, Tang GZ, Zeller K. Rat liver insulin mediator which stimulates pyruvate dehydrogenase phosphate contains galactosamine and D-chiroinositol. Biochem Biophys Res Commun. 1988 Mar 30;151(3):1416–1426. [PubMed]
  • Romero G, Luttrell L, Rogol A, Zeller K, Hewlett E, Larner J. Phosphatidylinositol-glycan anchors of membrane proteins: potential precursors of insulin mediators. Science. 1988 Apr 22;240(4851):509–511. [PubMed]
  • Saltiel AR, Sorbara-Cazan LR. Inositol glycan mimics the action of insulin on glucose utilization in rat adipocytes. Biochem Biophys Res Commun. 1987 Dec 31;149(3):1084–1092. [PubMed]
  • Eardley DD, Koshland ME. Glycosylphosphatidylinositol: a candidate system for interleukin-2 signal transduction. Science. 1991 Jan 4;251(4989):78–81. [PubMed]
  • Ohmichi M, Decker SJ, Saltiel AR. Nerve growth factor stimulates the tyrosine phosphorylation of a 38-kDa protein that specifically associates with the src homology domain of phospholipase C-gamma 1. J Biol Chem. 1992 Oct 25;267(30):21601–21606. [PubMed]
  • Vivien D, Petitfrère E, Martiny L, Sartelet H, Galéra P, Haye B, Pujol JP. IPG (inositolphosphate glycan) as a cellular signal for TGF-beta 1 modulation of chondrocyte cell cycle. J Cell Physiol. 1993 Jun;155(3):437–444. [PubMed]
  • Jacquemin C. Glycosyl phosphatidylinositol in thyroid: cell signalling or protein anchor? Biochimie. 1991 Jan;73(1):37–40. [PubMed]
  • Misek DE, Saltiel AR. An inositol phosphate glycan derived from a Trypanosoma brucei glycosyl-phosphatidylinositol mimics some of the metabolic actions of insulin. J Biol Chem. 1992 Aug 15;267(23):16266–16273. [PubMed]
  • Schofield L, Hackett F. Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J Exp Med. 1993 Jan 1;177(1):145–153. [PMC free article] [PubMed]
  • Romero G, Gámez G, Huang LC, Lilley K, Luttrell L. Anti-inositolglycan antibodies selectively block some of the actions of insulin in intact BC3H1 cells. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1476–1480. [PMC free article] [PubMed]
  • Low MG. The glycosyl-phosphatidylinositol anchor of membrane proteins. Biochim Biophys Acta. 1989 Dec 6;988(3):427–454. [PubMed]
  • Ferguson MA, Williams AF. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu Rev Biochem. 1988;57:285–320. [PubMed]
  • Müller G, Dearey EA, Pünter J. The sulphonylurea drug, glimepiride, stimulates release of glycosylphosphatidylinositol-anchored plasma-membrane proteins from 3T3 adipocytes. Biochem J. 1993 Jan 15;289(Pt 2):509–521. [PMC free article] [PubMed]
  • Müller G, Schubert K, Fiedler F, Bandlow W. The cAMP-binding ectoprotein from Saccharomyces cerevisiae is membrane-anchored by glycosyl-phosphatidylinositol. J Biol Chem. 1992 Dec 15;267(35):25337–25346. [PubMed]
  • Rasmussen H, Barrett PQ. Calcium messenger system: an integrated view. Physiol Rev. 1984 Jul;64(3):938–984. [PubMed]
  • Mihalcu F, Ungureanu V, Gancevici G, Popescu C, Petrovici A, Burghele B, Hagiopol C. Study on some autochthonous polystyrene-latex products in view to obtain the streptococcal MAP latex antigen. Arch Roum Pathol Exp Microbiol. 1985 Apr-Jun;44(2):141–153. [PubMed]
  • Suzuki S, Sugi H. Evidence for extracellular localization of activator calcium in dog coronary artery smooth muscle as studied by the pyroantimonate method. Cell Tissue Res. 1989 Aug;257(2):237–246. [PubMed]
  • Sugi H, Suzuki S, Daimon T. Intracellular calcium translocation during contraction in vertebrate and invertebrate smooth muscles as studied by the pyroantimonate method. Can J Physiol Pharmacol. 1982 Apr;60(4):576–587. [PubMed]
  • Fujimoto T, Nakade S, Miyawaki A, Mikoshiba K, Ogawa K. Localization of inositol 1,4,5-trisphosphate receptor-like protein in plasmalemmal caveolae. J Cell Biol. 1992 Dec;119(6):1507–1513. [PMC free article] [PubMed]
  • Fujimoto T. Calcium pump of the plasma membrane is localized in caveolae. J Cell Biol. 1993 Mar;120(5):1147–1157. [PMC free article] [PubMed]
  • Berridge MJ. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. [PubMed]
  • Allbritton NL, Meyer T, Stryer L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science. 1992 Dec 11;258(5089):1812–1815. [PubMed]
  • Fewtrell C. Ca2+ oscillations in non-excitable cells. Annu Rev Physiol. 1993;55:427–454. [PubMed]
  • Berridge MJ. Inositol trisphosphate and calcium oscillations. Adv Second Messenger Phosphoprotein Res. 1992;26:211–223. [PubMed]
  • Shenoy-Scaria AM, Kwong J, Fujita T, Olszowy MW, Shaw AS, Lublin DM. Signal transduction through decay-accelerating factor. Interaction of glycosyl-phosphatidylinositol anchor and protein tyrosine kinases p56lck and p59fyn 1. J Immunol. 1992 Dec 1;149(11):3535–3541. [PubMed]
  • Korty PE, Brando C, Shevach EM. CD59 functions as a signal-transducing molecule for human T cell activation. J Immunol. 1991 Jun 15;146(12):4092–4098. [PubMed]
  • Hahn AB, Soloski MJ. Anti-Qa-2-induced T cell activation. The parameters of activation, the definition of mitogenic and nonmitogenic antibodies, and the differential effects on CD4+ vs CD8+ T cells. J Immunol. 1989 Jul 15;143(2):407–413. [PubMed]
  • Davis LS, Patel SS, Atkinson JP, Lipsky PE. Decay-accelerating factor functions as a signal transducing molecule for human T cells. J Immunol. 1988 Oct 1;141(7):2246–2252. [PubMed]
  • Malek TR, Ortega G, Chan C, Kroczek RA, Shevach EM. Role of Ly-6 in lymphocyte activation. II. Induction of T cell activation by monoclonal anti-Ly-6 antibodies. J Exp Med. 1986 Sep 1;164(3):709–722. [PMC free article] [PubMed]
  • Thompson LF, Ruedi JM, Glass A, Low MG, Lucas AH. Antibodies to 5'-nucleotidase (CD73), a glycosyl-phosphatidylinositol-anchored protein, cause human peripheral blood T cells to proliferate. J Immunol. 1989 Sep 15;143(6):1815–1821. [PubMed]
  • Carpenter G. Receptor tyrosine kinase substrates: src homology domains and signal transduction. FASEB J. 1992 Nov;6(14):3283–3289. [PubMed]
  • Stefanová I, Horejsí V, Ansotegui IJ, Knapp W, Stockinger H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science. 1991 Nov 15;254(5034):1016–1019. [PubMed]
  • Thomas PM, Samelson LE. The glycophosphatidylinositol-anchored Thy-1 molecule interacts with the p60fyn protein tyrosine kinase in T cells. J Biol Chem. 1992 Jun 15;267(17):12317–12322. [PubMed]
  • Dráberová L, Dráber P. Thy-1 glycoprotein and src-like protein-tyrosine kinase p53/p56lyn are associated in large detergent-resistant complexes in rat basophilic leukemia cells. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3611–3615. [PMC free article] [PubMed]
  • Bohuslav J, Cinek T, Horejsí V. Large, detergent-resistant complexes containing murine antigens Thy-1 and Ly-6 and protein tyrosine kinase p56lck. Eur J Immunol. 1993 Apr;23(4):825–831. [PubMed]
  • Cinek T, Horejsí V. The nature of large noncovalent complexes containing glycosyl-phosphatidylinositol-anchored membrane glycoproteins and protein tyrosine kinases. J Immunol. 1992 Oct 1;149(7):2262–2270. [PubMed]
  • Sargiacomo M, Sudol M, Tang Z, Lisanti MP. Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol. 1993 Aug;122(4):789–807. [PMC free article] [PubMed]
  • Glenney JR, Jr, Zokas L. Novel tyrosine kinase substrates from Rous sarcoma virus-transformed cells are present in the membrane skeleton. J Cell Biol. 1989 Jun;108(6):2401–2408. [PMC free article] [PubMed]
  • Glenney JR., Jr Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J Biol Chem. 1989 Dec 5;264(34):20163–20166. [PubMed]
  • Madara JL, Patapoff TW, Gillece-Castro B, Colgan SP, Parkos CA, Delp C, Mrsny RJ. 5'-adenosine monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cell monolayers. J Clin Invest. 1993 May;91(5):2320–2325. [PMC free article] [PubMed]
  • Andersson Forsman C, Gustafsson LE. Cytochemical localization of 5'-nucleotidase in the enteric ganglia and in smooth muscle cells of the guinea-pig. J Neurocytol. 1985 Aug;14(4):551–562. [PubMed]
  • Olsson RA, Pearson JD. Cardiovascular purinoceptors. Physiol Rev. 1990 Jul;70(3):761–845. [PubMed]
  • Andy RJ, Kornfeld R. The adenosine deaminase binding protein of human skin fibroblasts is located on the cell surface. J Biol Chem. 1982 Jul 25;257(14):7922–7925. [PubMed]
  • Casadó V, Lluis C, Canela E, Franco R, Mallol J. The distribution of A1 adenosine receptor and 5'-nucleotidase in pig brain cortex subcellular fractions. Neurochem Res. 1992 Feb;17(2):129–139. [PubMed]
  • Izumi T, Shibata Y, Yamamoto T. Quick-freeze, deep-etch studies of endothelial components, with special reference to cytoskeletons and vesicle structures. J Electron Microsc Tech. 1991 Nov;19(3):316–326. [PubMed]
  • Chang WJ, Rothberg KG, Kamen BA, Anderson RG. Lowering the cholesterol content of MA104 cells inhibits receptor-mediated transport of folate. J Cell Biol. 1992 Jul;118(1):63–69. [PMC free article] [PubMed]
  • Brown DA, Rose JK. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992 Feb 7;68(3):533–544. [PubMed]
  • Kurzchalia TV, Dupree P, Parton RG, Kellner R, Virta H, Lehnert M, Simons K. VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. J Cell Biol. 1992 Sep;118(5):1003–1014. [PMC free article] [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...