• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Nov 15, 1993; 90(22): 10876–10880.
PMCID: PMC47881

Gastric DNA-binding proteins recognize upstream sequence motifs of parietal cell-specific genes.

Abstract

Polymerase chain reaction amplification of cDNA from pig gastric mucosa demonstrated the presence of zinc-finger proteins called GATA-GT1, GATA-GT2, and GATA-GT3, each having zinc-finger sequences similar to previously characterized GATA-binding proteins. Subsequently, full-length cDNAs of GATA-GT1 and GATA-GT2 were obtained from rat stomach. The zinc-finger domains of GATA-GT1 and -GT2 were 66-86% identical on the amino acid level with each other and with other GATA-binding proteins. Potential protein kinase phosphorylation sites were present in the zinc-finger region. In contrast, regions outside the zinc fingers shared significantly lower similarities. GATA-GT2 was found to bind to the upstream sequence of the H+/K(+)-ATPase beta gene and to a sequence containing the GATA motif. GATA-GT1 and -GT2 were expressed predominantly in the gastric mucosa and at much lower levels in the intestine (GATA-GT2, also in testis), their tissue distributions being distinct from those of GATA-1, -2, or -3. These results clearly suggest that GATA-GT1 and GATA-GT2 are involved in gene regulation specifically in the gastric epithelium and represent two additional members of the GATA-binding protein family.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Saccomani G, Helander HF, Crago S, Chang HH, Dailey DW, Sachs G. Characterization of gastric mucosal membranes. X. Immunological studies of gastric (H+ + K+)-ATPase. J Cell Biol. 1979 Nov;83(2 Pt 1):271–283. [PMC free article] [PubMed]
  • Faller L, Jackson R, Malinowska D, Mukidjam E, Rabon E, Saccomani G, Sachs G, Smolka A. Mechanistic aspects of gastric (H+ + K+)-ATPase. Ann N Y Acad Sci. 1982;402:146–163. [PubMed]
  • Maeda M, Oshiman K, Tamura S, Futai M. Human gastric (H+ + K+)-ATPase gene. Similarity to (Na+ + K+)-ATPase genes in exon/intron organization but difference in control region. J Biol Chem. 1990 Jun 5;265(16):9027–9032. [PubMed]
  • Maeda M, Oshiman K, Tamura S, Kaya S, Mahmood S, Reuben MA, Lasater LS, Sachs G, Futai M. The rat H+/K(+)-ATPase beta subunit gene and recognition of its control region by gastric DNA binding protein. J Biol Chem. 1991 Nov 15;266(32):21584–21588. [PubMed]
  • Oshiman K, Motojima K, Mahmood S, Shimada A, Tamura S, Maeda M, Futai M. Control region and gastric specific transcription of the rat H+,K(+)-ATPase alpha subunit gene. FEBS Lett. 1991 Apr 9;281(1-2):250–254. [PubMed]
  • Newman PR, Greeb J, Keeton TP, Reyes AA, Shull GE. Structure of the human gastric H,K-ATPase gene and comparison of the 5'-flanking sequences of the human and rat genes. DNA Cell Biol. 1990 Dec;9(10):749–762. [PubMed]
  • Newman PR, Shull GE. Rat gastric H,K-ATPase beta-subunit gene: intron/exon organization, identification of multiple transcription initiation sites, and analysis of the 5'-flanking region. Genomics. 1991 Oct;11(2):252–262. [PubMed]
  • Canfield VA, Levenson R. Structural organization and transcription of the mouse gastric H+, K(+)-ATPase beta subunit gene. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8247–8251. [PMC free article] [PubMed]
  • Morley GP, Callaghan JM, Rose JB, Toh BH, Gleeson PA, van Driel IR. The mouse gastric H,K-ATPase beta subunit. Gene structure and co-ordinate expression with the alpha subunit during ontogeny. J Biol Chem. 1992 Jan 15;267(2):1165–1174. [PubMed]
  • Shull GE. cDNA cloning of the beta-subunit of the rat gastric H,K-ATPase. J Biol Chem. 1990 Jul 25;265(21):12123–12126. [PubMed]
  • Toh BH, Gleeson PA, Simpson RJ, Moritz RL, Callaghan JM, Goldkorn I, Jones CM, Martinelli TM, Mu FT, Humphris DC, et al. The 60- to 90-kDa parietal cell autoantigen associated with autoimmune gastritis is a beta subunit of the gastric H+/K(+)-ATPase (proton pump). Proc Natl Acad Sci U S A. 1990 Aug;87(16):6418–6422. [PMC free article] [PubMed]
  • Canfield VA, Okamoto CT, Chow D, Dorfman J, Gros P, Forte JG, Levenson R. Cloning of the H,K-ATPase beta subunit. Tissue-specific expression, chromosomal assignment, and relationship to Na,K-ATPase beta subunits. J Biol Chem. 1990 Nov 15;265(32):19878–19884. [PubMed]
  • Tamura S, Oshiman K, Nishi T, Mori M, Maeda M, Futai M. Sequence motif in control regions of the H+/K+ ATPase alpha and beta subunit genes recognized by gastric specific nuclear protein(s). FEBS Lett. 1992 Feb 24;298(2-3):137–141. [PubMed]
  • Tsai SF, Martin DI, Zon LI, D'Andrea AD, Wong GG, Orkin SH. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature. 1989 Jun 8;339(6224):446–451. [PubMed]
  • Evans T, Felsenfeld G. The erythroid-specific transcription factor Eryf1: a new finger protein. Cell. 1989 Sep 8;58(5):877–885. [PubMed]
  • Zon LI, Tsai SF, Burgess S, Matsudaira P, Bruns GA, Orkin SH. The major human erythroid DNA-binding protein (GF-1): primary sequence and localization of the gene to the X chromosome. Proc Natl Acad Sci U S A. 1990 Jan;87(2):668–672. [PMC free article] [PubMed]
  • Trainor CD, Evans T, Felsenfeld G, Boguski MS. Structure and evolution of a human erythroid transcription factor. Nature. 1990 Jan 4;343(6253):92–96. [PubMed]
  • Yamamoto M, Ko LJ, Leonard MW, Beug H, Orkin SH, Engel JD. Activity and tissue-specific expression of the transcription factor NF-E1 multigene family. Genes Dev. 1990 Oct;4(10):1650–1662. [PubMed]
  • Ko LJ, Yamamoto M, Leonard MW, George KM, Ting P, Engel JD. Murine and human T-lymphocyte GATA-3 factors mediate transcription through a cis-regulatory element within the human T-cell receptor delta gene enhancer. Mol Cell Biol. 1991 May;11(5):2778–2784. [PMC free article] [PubMed]
  • Ho IC, Vorhees P, Marin N, Oakley BK, Tsai SF, Orkin SH, Leiden JM. Human GATA-3: a lineage-restricted transcription factor that regulates the expression of the T cell receptor alpha gene. EMBO J. 1991 May;10(5):1187–1192. [PMC free article] [PubMed]
  • Joulin V, Bories D, Eléouet JF, Labastie MC, Chrétien S, Mattéi MG, Roméo PH. A T-cell specific TCR delta DNA binding protein is a member of the human GATA family. EMBO J. 1991 Jul;10(7):1809–1816. [PMC free article] [PubMed]
  • Lee ME, Temizer DH, Clifford JA, Quertermous T. Cloning of the GATA-binding protein that regulates endothelin-1 gene expression in endothelial cells. J Biol Chem. 1991 Aug 25;266(24):16188–16192. [PubMed]
  • Zon LI, Mather C, Burgess S, Bolce ME, Harland RM, Orkin SH. Expression of GATA-binding proteins during embryonic development in Xenopus laevis. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10642–10646. [PMC free article] [PubMed]
  • Dorfman DM, Wilson DB, Bruns GA, Orkin SH. Human transcription factor GATA-2. Evidence for regulation of preproendothelin-1 gene expression in endothelial cells. J Biol Chem. 1992 Jan 15;267(2):1279–1285. [PubMed]
  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. [PubMed]
  • Sanger F, Coulson AR, Barrell BG, Smith AJ, Roe BA. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. [PubMed]
  • Tabor S, Richardson CC. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. [PMC free article] [PubMed]
  • Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. [PubMed]
  • Singh H, LeBowitz JH, Baldwin AS, Jr, Sharp PA. Molecular cloning of an enhancer binding protein: isolation by screening of an expression library with a recognition site DNA. Cell. 1988 Feb 12;52(3):415–423. [PubMed]
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. [PubMed]
  • Kemp BE, Pearson RB. Protein kinase recognition sequence motifs. Trends Biochem Sci. 1990 Sep;15(9):342–346. [PubMed]
  • Chou PY, Fasman GD. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. [PubMed]
  • Pugh BF, Tjian R. Diverse transcriptional functions of the multisubunit eukaryotic TFIID complex. J Biol Chem. 1992 Jan 15;267(2):679–682. [PubMed]
  • Brady HJ, Sowden JC, Edwards M, Lowe N, Butterworth PH. Multiple GF-1 binding sites flank the erythroid specific transcription unit of the human carbonic anhydrase I gene. FEBS Lett. 1989 Nov 6;257(2):451–456. [PubMed]
  • Pevny L, Simon MC, Robertson E, Klein WH, Tsai SF, D'Agati V, Orkin SH, Costantini F. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature. 1991 Jan 17;349(6306):257–260. [PubMed]
  • Simon MC, Pevny L, Wiles MV, Keller G, Costantini F, Orkin SH. Rescue of erythroid development in gene targeted GATA-1- mouse embryonic stem cells. Nat Genet. 1992 May;1(2):92–98. [PubMed]
  • Martin DI, Zon LI, Mutter G, Orkin SH. Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages. Nature. 1990 Mar 29;344(6265):444–447. [PubMed]
  • Arceci RJ, King AA, Simon MC, Orkin SH, Wilson DB. Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol. 1993 Apr;13(4):2235–2246. [PMC free article] [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Gene
    Gene
    Gene links
  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • HomoloGene
    HomoloGene
    HomoloGene links
  • MedGen
    MedGen
    Related information in MedGen
  • Nucleotide
    Nucleotide
    Published Nucleotide sequences
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • Protein
    Protein
    Published protein sequences
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

    Your browsing activity is empty.

    Activity recording is turned off.

    Turn recording back on

    See more...