• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Nov 15, 1993; 90(22): 10623–10627.
PMCID: PMC47829

Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers.

Abstract

Wild crop relatives are an important source of genetic variation for improving domesticated species. Given limited resources, methods for maximizing the genetic diversity of collections of wild relatives are needed to help spread protection over a larger number of populations and species. Simulations were conducted to investigate the optimal strategy of sampling materials from populations of wild relatives, with the objective of maximizing the number of alleles (allelic richness) in collections of fixed size. Two methods, based on assessing populations for variation at marker loci (e.g., allozymes, restriction fragment length polymorphisms), were developed and compared with several methods that are not dependent on markers. Marker-assisted methods yielded higher overall allelic richness in the simulated collections, and they were particularly effective in conserving geographically localized alleles, the class of alleles that is most subject to loss.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (787K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Lande R. Genetics and demography in biological conservation. Science. 1988 Sep 16;241(4872):1455–1460. [PubMed]
  • Sirkkomaa S. Calculations on the decrease of genetic variation due to the founder effect. Hereditas. 1983;99(1):11–20. [PubMed]
  • Schoen DJ, Brown AH. Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4494–4497. [PMC free article] [PubMed]
  • Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3321–3323. [PMC free article] [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...