• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Aug 1, 1993; 90(15): 7153–7157.

A dominant negative retinoic acid receptor blocks neutrophil differentiation at the promyelocyte stage.


We have investigated the roles of retinoic acid receptors in the development of neutrophils by using an interleukin 3-dependent multipotent hematopoietic cell line (FDCP mix A4) as well as normal mouse bone marrow cells. Treatment of the FDCP mix A4 cells with murine granulocyte/macrophage-colony-stimulating factor (GM-CSF) induced these cells to differentiate into neutrophils and macrophages. When the endogenous retinoic acid receptor activity in FDCP mix A4 cells was suppressed by a dominant negative retinoic acid receptor construct, this GM-CSF-induced neutrophil differentiation was blocked at the promyelocyte stage. The blocked promyelocytes proliferated continuously as a GM-CSF-dependent cell line but could be induced to terminally differentiate into neutrophils with supraphysiological concentrations of all-trans-retinoic acid (1-10 microM). The ability of the dominant negative retinoic acid receptor to block neutrophil differentiation at the promyelocyte stage was also demonstrated in normal, primary mouse bone marrow cells. Our results indicate that retinoic acid receptors in conjunction with hematopoietic growth factors play a crucial role in the terminal differentiation of normal neutrophil precursors. The system described here may also serve as a model for studying the pathogenesis of human acute promyelocytic leukemia.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Evans RM. The steroid and thyroid hormone receptor superfamily. Science. 1988 May 13;240(4854):889–895. [PubMed]
  • de The H, Marchio A, Tiollais P, Dejean A. Differential expression and ligand regulation of the retinoic acid receptor alpha and beta genes. EMBO J. 1989 Feb;8(2):429–433. [PMC free article] [PubMed]
  • Largman C, Detmer K, Corral JC, Hack FM, Lawrence HJ. Expression of retinoic acid receptor alpha mRNA in human leukemia cells. Blood. 1989 Jul;74(1):99–102. [PubMed]
  • Borrow J, Goddard AD, Sheer D, Solomon E. Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science. 1990 Sep 28;249(4976):1577–1580. [PubMed]
  • de Thé H, Chomienne C, Lanotte M, Degos L, Dejean A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature. 1990 Oct 11;347(6293):558–561. [PubMed]
  • Alcalay M, Zangrilli D, Pandolfi PP, Longo L, Mencarelli A, Giacomucci A, Rocchi M, Biondi A, Rambaldi A, Lo Coco F, et al. Translocation breakpoint of acute promyelocytic leukemia lies within the retinoic acid receptor alpha locus. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1977–1981. [PMC free article] [PubMed]
  • De Ruyter MG, Lambert WE, De Leenheer AP. Retinoic acid: an endogenous compound of human blood. Unequivocal demonstration of endogenous retinoic acid in normal physiological conditions. Anal Biochem. 1979 Oct 1;98(2):402–409. [PubMed]
  • Zenke M, Muñoz A, Sap J, Vennström B, Beug H. v-erbA oncogene activation entails the loss of hormone-dependent regulator activity of c-erbA. Cell. 1990 Jun 15;61(6):1035–1049. [PubMed]
  • Damm K, Thompson CC, Evans RM. Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature. 1989 Jun 22;339(6226):593–597. [PubMed]
  • Sap J, Muñoz A, Schmitt J, Stunnenberg H, Vennström B. Repression of transcription mediated at a thyroid hormone response element by the v-erb-A oncogene product. Nature. 1989 Jul 20;340(6230):242–244. [PubMed]
  • Tsai S, Bartelmez S, Heyman R, Damm K, Evans R, Collins SJ. A mutated retinoic acid receptor-alpha exhibiting dominant-negative activity alters the lineage development of a multipotent hematopoietic cell line. Genes Dev. 1992 Dec;6(12A):2258–2269. [PubMed]
  • Spooncer E, Boettiger D, Dexter TM. Continuous in vitro generation of multipotential stem cell clones from src-infected cultures. Nature. 1984 Jul 19;310(5974):228–230. [PubMed]
  • de Thé H, Vivanco-Ruiz MM, Tiollais P, Stunnenberg H, Dejean A. Identification of a retinoic acid responsive element in the retinoic acid receptor beta gene. Nature. 1990 Jan 11;343(6254):177–180. [PubMed]
  • Geballe AP, Spaete RR, Mocarski ES. A cis-acting element within the 5' leader of a cytomegalovirus beta transcript determines kinetic class. Cell. 1986 Sep 12;46(6):865–872. [PubMed]
  • Spooncer E, Heyworth CM, Dunn A, Dexter TM. Self-renewal and differentiation of interleukin-3-dependent multipotent stem cells are modulated by stromal cells and serum factors. Differentiation. 1986;31(2):111–118. [PubMed]
  • Heyworth CM, Dexter TM, Kan O, Whetton AD. The role of hemopoietic growth factors in self-renewal and differentiation of IL-3-dependent multipotential stem cells. Growth Factors. 1990;2(2-3):197–211. [PubMed]
  • Tsai SF, Martin DI, Zon LI, D'Andrea AD, Wong GG, Orkin SH. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature. 1989 Jun 8;339(6224):446–451. [PubMed]
  • Yu VC, Delsert C, Andersen B, Holloway JM, Devary OV, När AM, Kim SY, Boutin JM, Glass CK, Rosenfeld MG. RXR beta: a coregulator that enhances binding of retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response elements. Cell. 1991 Dec 20;67(6):1251–1266. [PubMed]
  • Zhang XK, Hoffmann B, Tran PB, Graupner G, Pfahl M. Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature. 1992 Jan 30;355(6359):441–446. [PubMed]
  • de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell. 1991 Aug 23;66(4):675–684. [PubMed]
  • Kakizuka A, Miller WH, Jr, Umesono K, Warrell RP, Jr, Frankel SR, Murty VV, Dmitrovsky E, Evans RM. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell. 1991 Aug 23;66(4):663–674. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem Compound links
  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...