• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Jul 15, 1993; 90(14): 6884–6888.

Unusual microtubule-dependent endocytosis mechanisms triggered by Campylobacter jejuni and Citrobacter freundii.


Bacterial invasion of six different human epithelial cell lines showed that some strains of the intestinal pathogen Campylobacter jejuni invaded intestinal cell lines at a level 10(2)-10(4) times higher than reported previously for other Campylobacter strains. Separately, urinary tract isolates of Citrobacter freundii triggered a high-efficiency invasion of bladder cells. Use of multiple inhibitors with known effects on eukaryotic cell structures/processes allowed us to define in these genetically distinct bacterial genera unusual bacterial invasion mechanisms that uniquely require microtubules but not microfilaments. Campylobacter jejuni strain 81-176 uptake into 407 intestinal cells and Citrobacter entry into T24 bladder cells was blocked by microtubule depolymerization and inhibitors of coated-pit formation but not by microfilament depolymerization. Inhibitors of endosome acidification had no significant impact on intracellular survival of Campylobacter jejuni or Citrobacter freundii, but monensin markedly reduced Citrobacter uptake. Epithelial cell invasion by both of these bacterial genera was dependent upon de novo bacterial protein synthesis but not upon de novo eukaryotic cell protein synthesis. In contrast to the T24 cell line-specific, strict microtubule-dependent uptake, Citrobacter entry into other cell lines was inhibited by both microtubule- and microfilament-depolymerization, suggesting that these bacteria encode two separate pathways for uptake (i, microtubule-dependent; ii, microfilament-dependent) that are cell line-specific and are recognized perhaps depending on the presence and abundance of appropriate eukaryotic receptors.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Black RE, Levine MM, Clements ML, Hughes TP, Blaser MJ. Experimental Campylobacter jejuni infection in humans. J Infect Dis. 1988 Mar;157(3):472–479. [PubMed]
  • Walker RI, Caldwell MB, Lee EC, Guerry P, Trust TJ, Ruiz-Palacios GM. Pathophysiology of Campylobacter enteritis. Microbiol Rev. 1986 Mar;50(1):81–94. [PMC free article] [PubMed]
  • Field LH, Headley VL, Underwood JL, Payne SM, Berry LJ. The chicken embryo as a model for campylobacter invasion: comparative virulence of human isolates of Campylobacter jejuni and Campylobacter coli. Infect Immun. 1986 Oct;54(1):118–125. [PMC free article] [PubMed]
  • Humphrey CD, Montag DM, Pittman FE. Experimental infection of hamsters with Campylobacter jejuni. J Infect Dis. 1985 Mar;151(3):485–493. [PubMed]
  • Fauchere JL, Rosenau A, Veron M, Moyen EN, Richard S, Pfister A. Association with HeLa cells of Campylobacter jejuni and Campylobacter coli isolated from human feces. Infect Immun. 1986 Nov;54(2):283–287. [PMC free article] [PubMed]
  • Konkel ME, Joens LA. Adhesion to and invasion of HEp-2 cells by Campylobacter spp. Infect Immun. 1989 Oct;57(10):2984–2990. [PMC free article] [PubMed]
  • Konkel ME, Babakhani F, Joens LA. Invasion-related antigens of Campylobacter jejuni. J Infect Dis. 1990 Oct;162(4):888–895. [PubMed]
  • Guarino A, Giannella R, Thompson MR. Citrobacter freundii produces an 18-amino-acid heat-stable enterotoxin identical to the 18-amino-acid Escherichia coli heat-stable enterotoxin (ST Ia). Infect Immun. 1989 Feb;57(2):649–652. [PMC free article] [PubMed]
  • Rae CE, Fazio A, Rosales JP. Successful treatment of neonatal Citrobacter freundii meningitis with ceftriaxone. DICP. 1991 Jan;25(1):27–29. [PubMed]
  • Fincher RM, Jackson MW, Fischer AQ. Citrobacter freundii: a newly reported cause of pyomyositis. Am J Med Sci. 1990 May;299(5):331–333. [PubMed]
  • Flegg PJ, Mandal BK. Citrobacter freundii bacteraemia presenting as typhoid fever. J Infect. 1989 Mar;18(2):171–173. [PubMed]
  • Elsinghorst EA, Baron LS, Kopecko DJ. Penetration of human intestinal epithelial cells by Salmonella: molecular cloning and expression of Salmonella typhi invasion determinants in Escherichia coli. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5173–5177. [PMC free article] [PubMed]
  • Gaillard JL, Berche P, Mounier J, Richard S, Sansonetti P. In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infect Immun. 1987 Nov;55(11):2822–2829. [PMC free article] [PubMed]
  • Hale TL, Morris RE, Bonventre PF. Shigella infection of henle intestinal epithelial cells: role of the host cell. Infect Immun. 1979 Jun;24(3):887–894. [PMC free article] [PubMed]
  • Clerc P, Sansonetti PJ. Entry of Shigella flexneri into HeLa cells: evidence for directed phagocytosis involving actin polymerization and myosin accumulation. Infect Immun. 1987 Nov;55(11):2681–2688. [PMC free article] [PubMed]
  • Finlay BB, Falkow S. Comparison of the invasion strategies used by Salmonella cholerae-suis, Shigella flexneri and Yersinia enterocolitica to enter cultured animal cells: endosome acidification is not required for bacterial invasion or intracellular replication. Biochimie. 1988 Aug;70(8):1089–1099. [PubMed]
  • Moya M, Dautry-Varsat A, Goud B, Louvard D, Boquet P. Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin toxin. J Cell Biol. 1985 Aug;101(2):548–559. [PMC free article] [PubMed]
  • Basu SK, Goldstein JL, Anderson RG, Brown MS. Monensin interrupts the recycling of low density lipoprotein receptors in human fibroblasts. Cell. 1981 May;24(2):493–502. [PubMed]
  • Schwartz AL, Bolognesi A, Fridovich SE. Recycling of the asialoglycoprotein receptor and the effect of lysosomotropic amines in hepatoma cells. J Cell Biol. 1984 Feb;98(2):732–738. [PMC free article] [PubMed]
  • Finlay BB, Gumbiner B, Falkow S. Penetration of Salmonella through a polarized Madin-Darby canine kidney epithelial cell monolayer. J Cell Biol. 1988 Jul;107(1):221–230. [PMC free article] [PubMed]
  • Finlay BB, Falkow S. Common themes in microbial pathogenicity. Microbiol Rev. 1989 Jun;53(2):210–230. [PMC free article] [PubMed]
  • Wileman T, Harding C, Stahl P. Receptor-mediated endocytosis. Biochem J. 1985 Nov 15;232(1):1–14. [PMC free article] [PubMed]
  • Larkin JM, Brown MS, Goldstein JL, Anderson RG. Depletion of intracellular potassium arrests coated pit formation and receptor-mediated endocytosis in fibroblasts. Cell. 1983 May;33(1):273–285. [PubMed]
  • Davies PJ, Davies DR, Levitzki A, Maxfield FR, Milhaud P, Willingham MC, Pastan IH. Transglutaminase is essential in receptor-mediated endocytosis of alpha 2-macroglobulin and polypeptide hormones. Nature. 1980 Jan 10;283(5743):162–167. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...