• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Jun 15, 1993; 90(12): 5695–5699.
PMCID: PMC46788

Transovarial inheritance of endosymbiotic bacteria in clams inhabiting deep-sea hydrothermal vents and cold seeps.

Abstract

Vesicomyid clams are conspicuous fauna at many deep-sea hydrothermal-vent and cold-seep habitats. All species examined have specialized gill tissue harboring endosymbiotic bacteria, which are thought to provide the hosts' sole nutritional support. In these species mechanisms of symbiont inheritance are likely to be key elements of dispersal strategies. These mechanisms have remained unresolved because the early life stages are not available for developmental studies. A specific 16S rRNA-directed oligodeoxynucleotide probe (CG1255R) for the vesocomyid endosymbionts was used in a combination of sensitive hybridization techniques to detect and localize the endosymbionts in host germ tissues. Symbiont-specific polymerase chain reaction amplifications, comparative gene sequencing, and restriction fragment length polymorphisms were used to detect and confirm the presence of symbiont target in tissue nucleic acid extracts. Nonradioactive in situ hybridizations were used to resolve the position of the bacterial endosymbionts in host cells. Symbiont 16S rRNA genes were consistently amplified from the ovarial tissue of three species of vesicomyid clams: Calyptogena magnifica, C. phaseoliformis, and C. pacifica. The nucleotide sequences of the genes amplified from ovaries were identical to those from the respective host symbionts. In situ hybridizations to CG1255R labeled with digoxigenin-11-dUTP were performed on ovarial tissue from each of the vesicomyid clams. Detection of hybrids localized the symbionts to follicle cells surrounding the primary oocytes. These results suggest that vesicomyid clams assure successful, host-specific inoculation of all progeny by using a transovarial mechanism of symbiont transmission.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB. Prokaryotic Cells in the Hydrothermal Vent Tube Worm Riftia pachyptila Jones: Possible Chemoautotrophic Symbionts. Science. 1981 Jul 17;213(4505):340–342. [PubMed]
  • Rau GH. Hydrothermal Vent Clam and Tube Worm 13C/12C: Further Evidence of Nonphotosynthetic Food Sources. Science. 1981 Jul 17;213(4505):338–340. [PubMed]
  • Distel DL, Lane DJ, Olsen GJ, Giovannoni SJ, Pace B, Pace NR, Stahl DA, Felbeck H. Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J Bacteriol. 1988 Jun;170(6):2506–2510. [PMC free article] [PubMed]
  • Giovannoni SJ, Britschgi TB, Moyer CL, Field KG. Genetic diversity in Sargasso Sea bacterioplankton. Nature. 1990 May 3;345(6270):60–63. [PubMed]
  • Stahl DA, Flesher B, Mansfield HR, Montgomery L. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol. 1988 May;54(5):1079–1084. [PMC free article] [PubMed]
  • Amann R, Springer N, Ludwig W, Görtz HD, Schleifer KH. Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature. 1991 May 9;351(6322):161–164. [PubMed]
  • Cary SC, Warren W, Anderson E, Giovannoni SJ. Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques. Mol Mar Biol Biotechnol. 1993 Feb;2(1):51–62. [PubMed]
  • Distel DL, DeLong EF, Waterbury JB. Phylogenetic characterization and in situ localization of the bacterial symbiont of shipworms (Teredinidae: Bivalvia) by using 16S rRNA sequence analysis and oligodeoxynucleotide probe hybridization. Appl Environ Microbiol. 1991 Aug;57(8):2376–2382. [PMC free article] [PubMed]
  • Medlin L, Elwood HJ, Stickel S, Sogin ML. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene. 1988 Nov 30;71(2):491–499. [PubMed]
  • Hultman T, Bergh S, Moks T, Uhlén M. Bidirectional solid-phase sequencing of in vitro-amplified plasmid DNA. Biotechniques. 1991 Jan;10(1):84–93. [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed]
  • Salama M, Sandine W, Giovannoni S. Development and application of oligonucleotide probes for identification of Lactococcus lactis subsp. cremoris. Appl Environ Microbiol. 1991 May;57(5):1313–1318. [PMC free article] [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...